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Abstract

I develop a method to identify collusive bidders and estimate their

effect on the seller’s revenue in first-price auctions with independent, pri-

vate valuations. Though colluders can use a simple strategy to make

their bids appear competitive, I exploit exogenous variation in the level

of competition across auctions to construct a consistent test of the null

hypothesis that a given bidder is not colluding. By controlling the proba-

bility of making one or more type I errors, the set of rejected hypotheses

serves as a lower confidence bound on the set of colluders. To produce

a lower confidence bound on the cost of collusion, I use consistent esti-

mates of the bidders’ valuation distributions to numerically solve for the

seller’s expected revenues in auctions with and without collusion. I apply

this methodology to estimate the extent of collusion in British Columbia’s

timber auctions.

1 Introduction

Consider the possibility that some bidders in a first-price, sealed-bid auction

are coordinating their bids to increase the probability that they win at a lower

price. Though the seller may suspect bidders have entered into such a collusive

agreement, collusion might be impossible to detect based on a statistical analysis

of their bids. In fact, colluders can generally use a simple and costless strategy

*email: kschurter@psu.edu. I thank Ali Hortaçsu, Azeem Shaikh, and Brent Hickman for
their advice and support throughout this research. I am also grateful to John List, Robert
Porter, Michael K. Price, and seminar participants at the University of Chicago, Cornell,
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to ensure their bids appear consistent with a model of competitive bidding.

Therefore, the question is what additional assumptions or data are needed to

identify colluders and estimate their effect on the seller’s revenue.

Motivated by this problem, I propose a strategy for identifying colluders in

first-price auctions under the assumption that bidders have asymmetrically dis-

tributed independent private valuations (IPV). The strategy exploits variation

in the level of competition across auctions that is independent of the bidders’

valuations. Such variation may be induced, for example, by an increase in a

binding reserve price or the set of eligible bidders. In response to this increased

competition, collusive and competitive models predict different changes in the

distribution of bids. Therefore, a collusive bidder reveals itself by failing to

respond appropriately to an exogenous increase in its apparent competition.

Based on this identification argument, I suggest a statistic to test the null hy-

potheses that a bidder is not colluding.

Previous collusion detection methods have leveraged idiosyncratic auction

rules, legal testimony, or more restrictive assumptions on the bidders’ valuation

in order to identify colluders. Thus, this paper’s contribution is to suggest

sources of exogenous variation that can be used to preemptively detect colluders

in standard first-price auctions when bidders have asymmetrically distributed

valuations. Because the seller can purposefully introduce exogenous variation in

competition by, for example, varying the reserve price, this paper provides a tool

for sellers to continuously screen for collusion. Moreover, if the colluders bid so

as to maximize their joint expected surplus, the seller can identify all colluders

with probability approaching one in sufficiently large samples. As a result, this

method may also serve to deter collusion by reducing the profitability of bidding

rings and increasing the probability of detection, thereby improving the efficacy

of enforcement methods.

The theoretical details of the identification strategy are developed in the first

half of the paper. Section 3 compares this method to previously proposed col-

lusion detection strategies. In section 4, I present a formal model of first-price

auctions with collusion and discuss assumptions on how bidders might collude.

Section 5 then establishes the nonparametric identification of this model. In sec-

tion 6, I derive a consistent test for collusion from a test for dependence between

the competitively rationalizing valuations and an exogenous instrument. Evi-

dence from simulations indicates this testing procedure has statistical power to

detect collusion even when colluders attempt to disguise their behavior. In com-

parison, when colluders always bid as if they were seriously competing against
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the non-ring competition, tests of exchangeability and independence in bidders’

strategies have power equal to size.

Detecting collusion might not be the practitioner’s ultimate goal, however.

Indeed, statistical evidence of collusion does not indicate per se illegal activ-

ity without additional evidence that bidders explicitly coordinated their bids.

An empirical analysis of bids may help antitrust authorities direct their enforce-

ment resources toward more suspicious activity or calculate damages after cartel

members have been identified, but the hypothesis testing procedure in this paper

does not substitute for the “smoking gun” in a criminal investigation.

Accordingly, I emphasize the goal of estimating the effect of collusion—

explicit or tacit—on prices. In section 7, I show that sellers or antitrust au-

thorities can obtain one such estimate by sending the family-wise error rate

(FWER)—the probability of falsely rejecting one or more of the null hypotheses—

to zero as the data grow. Intuitively, the testing procedure promises to become

increasingly conservative, such that the probability of falsely accusing a non-

collusive bidder tends toward zero as the sample of auctions grows. As long

as it does not become too conservative too quickly, the probability of type II

errors will also tend toward zero. Therefore, the set of rejected null hypotheses

consistently estimates the members of the collusive ring. Given this estimate

of the ring, standard methods from the empirical auction literature will then

deliver consistent estimates of each bidder’s private valuation distribution. In

turn, the estimated private valuation distributions can be used to predict bids

in counterfactual equilibria. Most notably, the econometrician can consistently

estimate the cost of collusion by solving for the equilibrium price distribution

that would prevail if none of the bidders colluded.

To provide a measure of precision of this point estimate, I note that the

multiple hypothesis testing framework provides simple lower confidence bounds

on the set of colluders. Indeed, controlling the FWER is equivalent to controlling

the probability that the true set of colluders contains the set of bidders for whom

the null hypothesis is rejected. Moreover, because the cost of collusion increases

with the size of the ring, a lower confidence bound on the ring produces a

corresponding lower confidence bound on the cost of collusion.

As an example of this methodology, I apply the identification strategy to

British Columbia’s timber auctions, where controversy surrounding the fairness

of its timber prices has persisted for decades. Section 8 discusses the institu-

tional details of the British Columbian timber industry. In section 9, I find

evidence that four of the most active firms do not bid competitively. Together
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they form a 95%-confidence bound on the collusive bidding ring. Though the

overall effect on the region’s timber prices is certainly smaller, I estimate that

collusion reduced the revenue at a typical auction by 6.6%.

2 An Example of the Identification Problem and

Its Solution

Abstracting from estimation, I assume the econometrician directly observes the

joint distribution of the bids. From these data, the goal is to infer the joint dis-

tribution of the bidders’ valuations for the object to be sold. To prove colluders

and their valuation distributions are not identified from bid data, it suffices to

show that a joint bid distribution may be rationalized by different valuation

distributions depending on who is colluding with whom.

Example: Consider an auction with a nonbinding reserve price

and three bidders whose private valuations are independently dis-

tributed. Let Vi and Bi denote bidder i’s valuation and bid for

i ∈ {1, 2, 3}. Suppose the econometrician observes that their bids

have a joint distribution function S(b1, b2, b3) =
√
2 b1 ·

√
2 b2 · 2 b3

for bi ∈ [0, 1/2].

Case I (No Collusion). If each bidder i privately chooses a

bid to maximize its expected profits

(vi − b) · P{Bidder i wins if it bids b} , (1)

there exists a unique distribution of valuations that rationalizes the

bid distribution. In this case, bidder 1 (or, symmetrically, bidder 2)

wins with probability (2b)3/2 when it bids b. The first-order condi-

tions for bidders 1 and 2’s profit-maximization problem then implies

they will bid b = 3 v/5. Their marginal valuation distributions are

therefore given by

F I
1 (v) = F I

2 (v) = P{Vi ≤ v} = P{Bi ≤ 3v/5} =
√
6v/5

for v between zero and 5/6. Analogously, the probability that bid-

der 3 wins with a bid of b is 2 b, its optimal bid is b = v/2, and its
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marginal valuation distribution must be uniform between zero and 1.

Case II (Bidders 1 and 2 Collude). Assume bidders 1 and

2 jointly maximize the sum of their expected profits. Because bid-

der 3’s profit-maximization problem is unaffected, the valuation dis-

tribution that rationalizes bidder 3’s bids is the same as in Case

I. On the other hand, the coalition of bidders 1 and 2 will win

with probability 2 b whenever the greater of their bids is b. The

colluder with the higher valuation should therefore optimally bid

b = max {v1, v2}/2, whereas the other may submit any “phantom”

bid below this amount.1 Because these phantom bids may be un-

related to the colluders’ valuations, I ignore the lower of b1 and b2.

Under the assumption that the valuations are independent, how-

ever, the higher bid still contains enough information to infer their

valuation distributions because

P{B1 ≤ b, B2 ≤ B1} = P{V1/2 ≤ b, V2 ≤ V1} = b (2)

P{B2 ≤ b, B1 ≤ B2} = P{V2/2 ≤ b, V1 ≤ V2} = b .

Under the independence assumption, this system is uniquely satisfied

when V1 and V2 are drawn from marginal valuation distributions

F II
1 (v) = F II

2 (v) =
√
v.2

This example demonstrates that bids generated from competitive and col-

lusive auctions can be observationally equivalent. Though, if a collusive model

indeed generated these data, the colluders must have been careful enough to sub-

mit phantom bids that could be rationalized without collusion. In particular,

despite the fact that any phantom bid below the other’s bid would have maxi-

mized the colluders’ expected profits, bidders 1 and 2 ensured their marginal bid

distributions were independent and solved the system of equations in (2). This

fact does not determine their phantom bidding strategies as a function of their

private valuations, but the fairly simple strategy of always bidding one-half of

1If v1 = v2, bidders 1 and 2 can arbitrarily break the tie.
2Interestingly, collusion affects the support of bidders 1 and 2’s inferred valuation distri-

bution. This observation also holds more generally. Therefore, colluders can be identified
under the assumption that bidders are symmetric or under the much weaker assumption that
their valuations share the same upper extremity of their supports. A test of the null hy-
pothesis that bidder i is colluding could be formulated as a test of H0 : v̄i = maxj v̄j versus
H1 : v̄i < maxj v̄j , where v̄i denotes the upper limit of the support of i’s valuations.
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their valuations could have produced these data.

Remarkably, however, a competitive bidder’s marginal valuation distribution

can be correctly inferred regardless of any collusion among the other bidders at

the auction. Because competitive bidders do not directly care whether they are

competing against a single bidding ring or the maximum bid among many in-

dependent bidders, they optimally use the same bidding strategy as long as the

distribution of their highest competing bid is the same. As a result, the econo-

metrician can infer a given bidder’s valuation distribution under the hypothesis

that it is not colluding. I formalize this result in Lemma 1.

On the other hand, if the bidder is colluding, a competitive model of bidding

will underestimate the true valuation distribution because it underestimates how

much the colluders “shade” their bids below their valuations. Furthermore, the

colluders’ valuation distributions will be more severely underestimated when the

ring is stronger relative to its non-ring competition. Therefore, the valuations

that competitively rationalize a colluder’s bids will covary with the level of

competition at the auction.

This argument is formalized in the proof of Theorem 2 provided in appendix

A. However, an extension of the example succinctly illustrates the collusion

detection strategy.

Example (continued, Bidders 1 and 2 Collude): Suppose

the collusive bidding ring faces stronger competition because bid-

der 4 enters the auction. Assume bidder 4’s valuation is distributed

uniformly between 0 and 1, while the other bidders’ valuation dis-

tributions are unchanged, i.e. the arrival of bidder 4 is exogenous.

In equilibrium, all serious bidders optimally bid two thirds of their

valuations. If bidders 1 and 2 always bid as if they were bidding

competitively against bidders 3 and 4, the joint distribution of bids

will be

S(b1, b2, b3, b4) =
√

3 b1/2 ·
√

3 b2/2 · 3 b3/2 · 3 b4/2

for bi ∈ [0, 2/3].

Under the false null hypothesis that bidder 1 is not colluding,

the econometrician observes the probability it wins with a bid of b

is (3 b/2)5/2. Its optimal bid is therefore b = 5 v/7. As depicted in

Figure 1, the implied distribution of bidder 1’s valuation is
√
15 v/14
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for v between 0 and 14/15, which differs from the distribution that

was inferred under the null before bidder 4 entered the auction. By

symmetry, bidder 2’s competitively rationalizing valuation distribu-

tion is identical to bidder 1’s. Because bidder 4’s entry is assumed

to be exogenous, the competitive IPV model cannot rationalize the

collusive bidders’ responses.

Alternatively, when bidders 1 and 2 are correctly assumed to be

colluding, the ring wins with probability 9 b2/4. Their optimal strat-

egy is then b = 2 v/3. Their valuation distributions must therefore

be equal to
√
v on [0, 1], which is the same as the distributions ob-

tained before bidder 4’s arrival.

Figure 1: A collusive bidder’s bid and valuation distributions before and after
the exogenous entry of a fourth bidder. The level of competition affects the valu-
ation distribution that competitively rationalizes a colluder’s bids. A colluder’s
competitively rationalizing valuation distribution lies above the true valuation
distribution because the competitive model overestimates the colluder’s com-
petition and therefore underestimates how much the colluder bids below its
valuations. Because the arrival of another competitor lessens the difference
between the competitive and collusive models’ predictions, the valuation distri-
bution implied by competition shifts closer to the truth.
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3 Related Collusion-Detection Methods

The identification strategy in this paper is based on a comparison of a given

bidder’s behavior across auctions, as opposed to cross-bidder comparisons within

auctions. In view of this fact, Aryal and Gabrielli (2013) and Price (2008)

represent the most closely related collusion-detection procedures that have been

proposed in the literature. Aryal and Gabrielli suggest testing for stochastic

dominance between the valuations that rationalize a firm’s bids under the null

and alternative hypotheses. They argue this within-bidder test asymptotically

controls the probability of type I errors under their modeling assumptions, but

such a test would not control size under the assumptions of section 4 because the

valuations implied by collusion are always greater than the valuations implied

by competition, even when the bidder is not actually colluding.

Similarly, Price (2008) looks for evidence of collusion by comparing a firm’s

bids across auctions. Analyzing the same data that I do in section 9, he first

uses theoretically motivated criteria to identify pairs of bidders who warrant

closer inspection. He then regresses bids on a vector of auction and bidder

characteristics and the number of bidders at the auction. The results of these

regressions indicate suspected colluders tend to bid less aggressively when an-

other suspected colluder is nearby, which is consistent with the hypothesis that

the bidders are in fact colluding.

List et al. (2007) also find suggestive evidence of collusion in the same sample

of British Columbia’s timber auctions. In their framework, the problem of

detecting collusion is a special case of the more general problem of estimating

the agents’ treatment status when treatment status is not directly observed. In

that sense, the bids submitted by collusive firms are the “treated” observations,

and the treatment reduces the colluders’ bids relative to what they would have

bid if they were not colluding. Though some of their findings are inconsistent

with the competitive IPV model of bidding, they conclude that the evidence of

collusion is mixed. They also suggest further research is needed to quantify the

impact the suspected colluders might have on expected revenues.

My proposed tests of cross-auction restrictions are also similar to the cross-

mechanism analysis in Athey et al. (2011). They observe that the prices in

ascending auctions were lower than predicted given the valuation distributions

estimated from a sample of first-price, sealed-bid auctions. They then confirm

this difference is statistically significant using a test of the null hypothesis that

the average observed and predicted prices are equal. Assuming that the choice of
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auction mechanism is independent of the valuations, this test provides evidence

against the null that all bidders are competitive.

The above identification strategies conceptually differ from the methods that

attempt to detect collusion by testing the within-auction restrictions implied by

the competitive model. To the extent they leverage different comparisons, these

within-bidder tests complement across-bidder tests of conditional independence

among bids (Porter and Zona, 1999; Bajari and Ye, 2003) and tests of the re-

striction that bidder i’s bids depend on covariates in the same manner regardless

of whether bidder i wins the auction (Porter and Zona, 1993).

Tests of independence are valid in any IPV model, but when bidders have

symmetrically distributed valuations, the competitive model places further re-

strictions on the distribution of the data. In particular, the joint distribution

of the bids must also be symmetric. By contrast, collusion among the bidders

would create asymmetries if the collusive ring allocates auctions in accordance

with the colluders’ valuations. Thus, a test for asymmetry in bidding behavior

may identify the colluders. For example, Pesendorfer (2000) observes that bid-

ders who collude efficiently operate as though they are a single, stronger bidder

whose valuation is distributed as the maximum of the individual bidders’ val-

uations. This induced asymmetry then causes non-collusive firms to bid more

aggressively, and in equilibrium, the non-collusive firms’ bid distributions will

stochastically dominate each of the colluders’ bid distributions.

In addition, when the data include bidder-specific covariates, Bajari and Ye

(2003) suggest a regression-based test of exchangeability in the bidders’ strategy

functions that may provide further evidence of collusion. Intuitively, this test

builds on the insight that all of bidder i’s competitors are exchangeable under

the null hypothesis. But if bidder i is colluding with bidder j, bidder i’s bid

distribution will not depend on bidder j’s characteristics in the same way that

it depends on non-collusive bidders’ characteristics.

Collusion detection methods have also been developed for other auction

mechanisms, including second-price and ascending auctions (Baldwin et al.,

1997; Brannman and Froeb, 2000; Marmer et al., 2017), first-price auctions

with secret reserve prices and supplementary rounds of bidding (Kawai and

Nakabayashi, 2014), and average-bid auctions (Conley and Decarolis, 2016).

Of these methods, the nonparametric identification analysis in Marmer et al.

(2017) is closest to the present paper. Under assumptions nearly identical to

those in section 4, they prove the members of a collusive ring and their valuation

distributions are nonparametrically identified in an ascending auction.
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Interestingly, nonparametric identification in an asymmetric IPV second-

price and ascending auctions is easier than in first-price auctions in the sense

that detecting collusion does not require exogenous variation in competition

across ascending auctions. Because collusive bidders have an incentive to ma-

nipulate their losing bids to reduce the price paid by the designated ring leader,

a losing colluder’s bids will be stochastically weaker than would be predicted

from the distribution of its winning bids. This relative ease of detection in

second-price and ascending auctions contrasts with the general perception that

these auction formats are more susceptible to collusion because phantom bid-

ders have no private incentive to defect and outbid a fellow colluder who has a

higher valuation. Ironically, the same feature that facilitates collusion among

the bidders—that auction prices only depend on losing bids—also facilitates the

detection of collusion in second-price and ascending auctions vis-à-vis first-price

auctions.

4 An Asymmetric Model of First-Price Auctions

with Collusion

Let N denote the set of bidders bidding for an object in a first-price, sealed-

bid auction. Bidder i’s private valuation of the object is a random variable Vi

independently distributed according to the distribution function Fi. Assume

each bidder i’s valuation has compact support, Vi = [v
¯i
, v̄i], and that it has a

density, fi, which is bounded away from zero on (v
¯i
, v̄i]. In addition, the seller

sets a reserve price, r < min{v̄i}.
If a bidder has not been designated to represent the collusive bidding ring or

has a valuation below the reserve price, it will not submit a serious bid at the

auction, i.e. a bid that it believes will win with positive probability. Otherwise,

each bidder i chooses a serious bid b to maximize its expected payoff

(vi − b) ·Gi(b), (3)

where Gi(b) is the probability that i wins with a bid of b. I refer to Gi as

i’s competing distribution because it is the distribution function for the highest

bid among i’s competitors. In equilibrium, the bidders’ competing distributions

depend on the strategies and marginal valuation distributions, as well as the
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collusive bidding ring, denoted by R ⊂ N .3 I refer to the special case where R
is the empty set or a singleton as the competitive model. When R = N , the

model predicts that the all-inclusive bidding ring will obtain the object at the

reserve price (McAfee and McMillan, 1992).

The third possibility is thatR is a non-empty, non-singleton, proper subset of

N . In this case, I assume the ring colludes efficiently by nominating the member

with the highest valuation to submit a serious bid that maximizes the expected

profits of the ring. All other ring bidders may submit arbitrary phantom bids

below the ring’s serious bid. These phantom bids would never win but may be

intended to create the illusion of competition.

Because each bidder knows its competing distribution, which depends on the

composition and behavior of the ring, I implicitly assume bidders are sufficiently

aware of any collusion to maximize their expected surplus. That said, bidders

may know their competing distributions without being specifically aware of any

collusion, since the number and strength of its competitors are merely proximate

to the distribution of its highest competing bid. On the other hand, because

comparative statics play a major role in the identification strategy, bidders must

be able to respond optimally to changes in the auction environment. Unless the

bidders have sufficient experience with or data from auctions spanning the full

support of the covariates, this generally requires that any collusion is common

knowledge among the bidders.

To summarize, the modeling assumptions are enumerated below:

Assumptions (IPV Modeling Assumptions).

MA.1 The set of potential bidders, N , is common knowledge.

MA.2 Private valuations are independently distributed over their compact sup-

ports.

MA.3 The valuation densities are bounded away from zero on (
¯
vi, v̄i].

MA.4 Each bidder i knows Gi, the distribution of the highest bid among i’s com-

petitors.

MA.5 All serious bidders are risk neutral and bid to maximize their expected

profits in (3).

3The model can allow for multiple rings operating in the same auction, but I focus on the
case of a single ring for the sake of clarity.
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In addition, the collusive ring behaves in accordance with MA.7

Assumptions (Modeling Assumptions Regarding Collusion).

MA.6 A proper (possibly empty) subset of potential bidders, R ⊂ N collude prior

to bidding.

MA.7 The bidder with the highest valuation among R bids to maximize the ex-

pected profits in (3). All other colluders either abstain from bidding or

submit a phantom bid less than the serious colluder’s bid.

Under assumptions MA.1–MA.5, Lebrun (2006) proves that, in a competi-

tive auction, the unique Bayes-Nash equilibrium inverse bidding strategies are

differentiable and strictly increasing in the bids whenever they are greater than

the minimum bid. The support of the equilibrium bids share a common lower

limit, though some bidders may have different upper limits. Nonetheless, the

inverse bidding strategies can be continuously extended over the entire compact

support of the bids, [
¯
b, b̄].

Lebrun’s result extends easily when some bidders collude efficiently. The

competitive bidders’ equilibrium strategies will be identical to the ones they

would use in an auction in which the colluders were replaced by a single bidder

whose valuation is distributed like the maximum of the ring’s valuations. Thus,

the following proposition characterizes the equilibrium bidding strategies in an

auction with collusion.

Proposition 1. Under assumptions MA.1–MA.7, there exists a unique equilib-

rium profile of serious bidding strategies with σi(vi) ≤ vi for each i. Moreover,

each non-collusive bidder’s strategy

(i) is nondecreasing on [
¯
vi, v̄i],

(ii) is equal to the minimum serious bid at the minimum serious bid, i.e. σi(
¯
b) =

¯
b, where

¯
b is the infimum of the set of bids that win with positive probability

in equilibrium,

(iii) is differentiable and strictly increasing whenever σi(vi) is greater than the

minimum serious bid, and

(iv) has an inverse that can be continuously extended over the compact support

[
¯
b, b̄], which is given by the bidder’s first-order condition

σ−1
i (bi) = vi = bi +

Gi(bi)

gi(bi)
, (4)
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where gi is the density of i’s competing distribution,

and each collusive bidder’s equilibrium strategy

(v) satisfies properties (i)–(iv) whenever vi > maxj ̸=i∈R vj, and

(vi) is a possibly random function of all the colluders’ valuations bounded above

by the serious colluder’s bid whenever vi ≤ maxj∈R vj.

In short, the serious equilibrium bids are increasing functions of the valua-

tions, they start at a common minimum bid, and the collusive bidders adopt the

same serious bidding strategies because they all face the same competing distri-

bution. The only irregularity is that one of the non-collusive bidders’ strategies

or all of the colluders’ strategies could be constant near the minimum bid.

5 Identification

A private value auction model is a collection of pairs (F, σ̃), where F is a joint

distribution of valuations and covariates, (V,X), and σ̃ is a profile of bidding

strategies σ̃i : (V,X) 7→ Bi which may depend on the bidder’s own valuation

as well as any other bidders’ valuations that it learns prior to bidding. In the

competitive IPV model, F must belong to the collection of absolutely continuous

valuation distributions satisfying MA.1–MA.5 that are independent conditional

on X, and σ̃ : V 7→ B is restricted to the unique strategy profile σ that satisfies

the first-order condition (4) with Gi(b|x) =
∏

j ̸=i Fj(σ
−1
j (b;x)|x). When the

model is enlarged to include strategy profiles that satisfy MA.1–MA.7, I refer

to it as an IPV auction model with collusion.

Given the counterfactual questions of interest, the goal is to recover the F

that generated the observed distribution of the data. In nonparametric models,

however, data never provide information about F (v|x) at valuations below the

minimum bid,
¯
b(x). Thus, I say that F is identified (up to the truncation

induced by the minimum bid) whenever each F (v|x) is uniquely determined

for v with vi > σ−1
i (

¯
b(x)) for all i, where σi is the serious bidding strategy

defined by (4). Letting (B,X) denote the random vector of bids and covariates,

I formalize this definition as follows.

Definition 1. A model M is identified from the joint distribution of bids and

covariates up to the truncation at
¯
b if, whenever (σ̃(V,X), X) and (σ̃′(V ′, X ′), X ′)

are equal in distribution for some (V,X) and (V ′, X ′) distributed according to
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F and F ′ with (F, σ), (F ′, σ′) ∈ M, F (v, x) = F ′(v, x) for all continuity points

of F with v > σ−1
i (

¯
b).

More generally, a function, Y (B,X), of the bids and covariates may be

observed. For instance, the transaction price is sometimes the only observable

bid. In this case, I will say the model is identified from Y if the above definition

holds when (σ̃(V,X), X) and (σ̃′(V ′, X ′), X ′) are replaced by Y (σ̃(V,X), X)

and Y (σ̃′(V ′, X ′), X ′).

Definition 1 does not require σ̃ to be identified because the phantom bidding

strategies that rationalize the data need not be unique and are not required

to identify the colluders or estimate the cost of collusion. The serious bid-

ding strategies σi : vi 7→ bi are identified, however, because they are uniquely

determined by F , the identities of the colluders, and the bidders’ first-order con-

ditions. Note that the modeling assumptions imply σi(vi) = σ̃i(v) if bidder i is

competitive or is the designated serious bidder from the cartel, but the converse

need not hold.

5.1 Identification from Prices and Exogenous Variation in

Competition

The IPV model is not generically identified from bids alone unless the identities

of colluders are known a priori. But, as suggested by the example in section 2,

an instrument that induces variation in the level of competition can be used to

construct a test for collusion as a test of independence between the instrument

and competitively rationalizing valuation. Once all the ring members have been

identified in this way, each of the bidders’ true competing distributions can be

computed. Their valuation distributions can then be inferred from the first-

order condition of the bidders’ profit maximization problems. Hence, the IPV

model with collusion is identified from the distribution of winning bids and

exogenous variation in the level of competition.

The proof of Theorem 2 generalizes the above argument. In the remainder of

this section, I sketch the key steps toward establishing this main identification

result. All proofs are in Appendix A.

As an important intermediate step, I prove Lemma 1, which establishes (i)

the marginal distribution of each bidder’s serious bid, σi(Vi), is identified from

the distribution of prices and identities of the winners, and (ii) each bidder i’s

valuation distribution is identified under the assumption that i is not colluding.

In other words, part (i) of Lemma 1 identifies the (potentially counterfactual)
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distribution of the bid that bidder i would have submitted if i were trying to

maximize its expected profits in (3). While trivial to show for non-collusive

bidders, I construct a collusive bidder i’s marginal serious bid distribution as

a function of the distribution of prices, denoted by M , and the probability

that bidder i wins and bids less than or equal to b, denoted by Mi(b). This

construction is adapted from a result in the competing risks literature that

was introduced to the empirical auction literature in Athey and Haile (2002).

By analogy to the competing risks literature, I refer to Mi as the cumulative

incidence function for the risk that bidder i wins the auction.

Given the marginal serious bid distributions, I then construct the competing

distribution for each bidder i under the null hypothesis that i is not colluding as

the product of each other bidder’s marginal serious bid distribution. Bidder i’s

valuation distribution is then identified under the assumption i is not colluding

with anyone else. Note that any collusion among i’s competitors does not distort

the inference made about i’s valuation.

Lemma 1. Assume MA.1–MA.7.

(i) Each bidder’s marginal serious bid distribution is identified from the prices

and the identities of the winners.

(ii) A bidder’s competing distribution and valuation distribution are identified

under the null hypothesis that it is not colluding with anyone else at the

auction.

If bidder i might be colluding with an unknown subset of the other bidders,

there are many competing distributions that can be constructed from the other

bidders’ bid distributions, each of which generally implies a different valuation

distribution. Accordingly, the model is not identified from the winning bids.

In fact, the example in section 2 already proved a stronger result. Namely, the

model is still not identified when the full vector of bids is observed.

Theorem 1. The IPV model with collusion is not identified from the full vector

of bids.

Interestingly, however, exogenous instruments for each bidder’s competing

distribution are sufficient to recover the true composition of the bidding ring

even when only the winning bids are observed. Formally, the identifying as-

sumptions are as follows.

Assumptions (Identification Assumptions).
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IA.1 For each i, the reverse hazard rate of bidder i’s competing distribution

depends non-trivially on Zi.

IA.2 Z = (Z1, . . . , Zn) is observable, the distribution of Zi conditional on co-

variates Xi is non-degenerate, and Zi ⊥⊥ Vi |Xi for all i.

Assumption IA.1 guarantees that the instrument is relevant to i’s optimal bid-

ding strategy. Assumption IA.2 asserts that the econometrician observes in-

dependent variation in an instrument for each bidder i. For instance, if Zi is

equal to the exogenously varying reserve price for all i, then both identification

assumptions will be satisfied without conditioning on the additional covariates

in Xi. Alternatively, Zi could be a vector of i’s competitors’ characteristics

(e.g. distance to a job site), in which case it may be necessary to condition on

i’s characteristics and use the residual variation in Zi to shift i’s competing

distribution.

The applied researcher must select and defend the use of an exogenous com-

petition shifter with care. The case for exogeneity is most compelling when the

seller explicitly randomizes or experiments with participation rules or reserve

prices. Naturally occurring variation in the number of bidders might be useful if

a model of selective entry indicates that the distribution of a bidder’s valuation

conditional on participating in the auction does not depend on the number of

active bidders. Alternatively, if the entry model implies a negative relationship

between a bidder’s valuations and the set of active bidders under the null hy-

pothesis that it is not colluding, the variation in the number of bidders might

permit a conservative test for collusion.

As indicated by the example in section 2, the crux of the main identification

result in Theorem 2 is that a bidder’s competitively rationalizing valuations are

independent of the exogenous competition shifter if and only if it is not colluding

with any other bidders in the auction. After formally proving this in Lemma 2,

Theorem 2 immediately follows from now standard identification results in the

empirical auction literature.

Lemma 2. Under MA.1–MA.5 and IA.2, the competitively rationalizing valu-

ations Vi,∅ are independent of the competition shifters Zi (possibly conditional

on additional covariates Xi) if i is not colluding with anyone in N . Under the

additional assumptions MA.6–MA.7 and IA.1, the competitively rationalizing

valuations are independent of the competition shifters if and only if bidder i is

not colluding.
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Theorem 2. Under MA.1–MA.7 and IA.1–IA.2, the IPV model with collu-

sion is identified from the distribution of prices, identities of the winners, and

covariates.

Remark 1. There is a unique configuration of the ring that simultaneously

rationalizes all of the bidders’ bid distributions and satisfies the independence

assumption. Letting Vi,R denote the random valuation that rationalizes i’s bids

under the assumption that the bidders in R are colluding, this means that there

is a unique non-singleton R ⊂ N such that

Vi,R ⊥⊥ Zi |Xi for all i . (5)

Lemma 2 states, however, that Vi,∅ and Zi are independent if and only if i /∈ R.

Thus, it is not necessary to search over all possible configurations of the ring

to find the subset that satisfies the identifying restriction (5). Instead, it is

sufficient to test for dependence between Vi,∅ and Zi for each i. The true set of

colluders is then given by {i : i ∈ N , Vi,∅ ̸⊥⊥ Zi |Xi}.

Remark 2. A slightly weaker version of Theorem 2 extends to auctions in which

multiple rings are operating. In this case, the above argument can be used to

show that all bidders who are colluding with anyone else will be identified.

Assuming each bidder is a member of at most one bidding ring, the next step

would be to argue that there is a unique partition of these collusive bidders into

rival rings that rationalizes the data. This partition is unique as long as each

partition implies a different competing distribution, hence different predictions

about the bidders’ responses to the instruments.

An exception to the identification result occurs when some of the colluders’

valuation are identically distributed. For instance, suppose there are two strong

bidders and two weak bidders, and each of the strong bidders is colluding with

one of the weak bidders.4 If each bidder always bids as if it is bidding com-

petitively against the rival cartel bidder, the distribution of the reserve prices

and winning bids will reject the comparative statics implied by the competitive

model but will not reveal which strong bidder is colluding with which weak bid-

der. Even in this exceptional case, however, the configurations of the rings are

identified up to permutations of the identical bidders. Moreover, the competing

4The same argument holds when the bidders’ valuations are all drawn from the same
marginal distribution. I assume that there are two types of bidders to illustrate that this
problem arises even if only a subset of the bidders’ valuations are exchangeable.
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distributions, and hence the distribution of each bidders’ private valuations, are

identified because they are invariant under these permutations.

Remark 3. The test of independence between Vi,∅ and Zi is unable to detect

collusion between an active bidder in N and a bidder who is eligible but does

not submit a serious with bid positive probability. Assuming colluders maximize

their joint expected surplus, such a situation could only arise if the supports

of the eligible bidders’ valuations do not overlap. As an example, consider a

three-bidder auction with a reserve price r < 1 in which a weak bidder with

valuations that take support on [0, 1] colludes with a strong bidder whose val-

uations take support on [1, 2], while the lone competitive bidder has valuations

taking support on [0, 2]. In equilibrium, the minimum serious bid might be

strictly less than one,5 but the weak colluder is never observed to submit a seri-

ous bid because the strong colluder always has a greater valuation. Hence, one

cannot apply Lemma 1 to recover the distribution of what the weak colluder

would have bid if it were the designated cartel bidder. In this case, variation in

the strong colluder’s competing distribution may not be useful in detecting the

collusion because there is not necessarily any difference between the competing

distribution inferred under the null and alternative hypotheses. Indeed, if the

weak colluder completely abstains from bidding, then it might never appear in

a dataset that only records the identities of those who submit a bid, and the

collusion would be undetectable based on any analysis of the bids.

6 Empirical Framework and Definition of the

Estimators

6.1 Empirical Framework

Let t index auctions in which an object with characteristics Xt is available for

sale to a setNt of eligible bidders. Let Zt = (Zit)i∈Nt
and B̃t = (B̃it)i∈Nt

denote

the instrument and bid for bidder i in auction t. A bidder whose payoff from

winning the object, uit, is less than the reserve price, r̃t, will not participate

in auction t, in which case I record the bid as censored at the reserve price.

Therefore, for each auction, the data consist of realizations of the auction-level

5The minimum serious bid in the unique weakly undominated equilibrium would be the
greatest maximizer of (1− b)F3(b) on [max{r, 0}, 1], where F3 is the valuation distribution of
the competitive bidder. See equation (17) in Lebrun (2006).
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covariates, instruments, and left-censored bids:
(
Zt, R̃t,Nt, Xt,1

{
B̃t ≥ R̃t

})
.

Asymptotically, I assume the number of auctions, T , tends toward infinity while

the set of bidders, ∪∞
t=1 Nt, is finite.

If the objects for sale are adequately described by a small number of charac-

teristics, then nonparametrically estimating the distribution of valuations con-

ditional on Xt may be practical. Commonly, however, some assumptions are

needed to reduce the dimensionality of the objects’ heterogeneity. To this end,

I assume that each bidder’s utility is additively separable in the object’s observ-

able characteristics and an unobservable idiosyncratic private component, Vit,

which is independent of Xt and independently distributed across bidders and

independently and identically distributed across auctions:

Uit = Vit + µ(Xt) .

Additive separability in the valuations implies additive separability in the equi-

librium bidding strategies and the distribution of Vit is identified up to location

(Athey and Haile, 2002).

Homogenized bids and reserve prices can then be defined relative to an arbi-

trary benchmark, x0. Let Bit = B̃it−µ(Xt)+µ(x0) and rt = r̃t−µ(Xt)+µ(x0)

denote those homogenized quantities.6 In words, Bit is the bid that would have

been observed if r̃t had been rt and the auction-level covariates had been x0 in-

stead of xt. If µ(x0) is normalized to zero, the homogenized equilibrium bidding

strategies satisfy

Bit = Vit −
Gi(Bit|zt, rt,Nt)

gi(Bit|zt, rt,Nt)
.

In practice, the function µ is typically parameterized as µ(·;β). The relatively

fast rate of convergence for estimators of β asymptotically justifies using the

homogenized bids as though they were data for the purposes of the nonpara-

metric estimators defined below. In the next sections, I work exclusively with

homogenized bids and reserve prices and refer to them simply as bids and reserve

prices.

6In some applications, it may also be appropriate to homogenize Zt. For instance, if Zt

is the reserve price, it should be homogenized so that variation in the instrument reflects
variation in the screening level. But one would skip this step if Nt serves as the instrument
for the level of competition.
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6.2 Definition of the Estimators

The estimators that I define in this section are sample analogs to their popu-

lation counterparts in the proof of Lemma 1. In each case, I condition on the

set of eligible bidders and use a continuous second-order kernel function, K,

to smooth over the reserve prices and Z. For instance, the sample analog to

Mi(·, z, r,N )—the conditional cumulative incidence function for the risk that

bidder i wins—is defined by

MiT (b | z, r,N ) =

∑
t 1{bit = pt}1{bit ≤ b} · 1{Nt = N} ·Kh(z − zt, r − rt)∑

t 1{Nt = N} ·Kh(z − zt, r − rt)

=

∑
t 1{bit = pt}1{bit ≤ b}wt∑

t wt
,

where Kh(u) = |h|−1/2K(h1/2 u), h is a symmetric positive definite bandwidth

matrix, and the price pt is the maximum of the reserve price and the highest

bid at auction t, and wt is an abbreviated notation for the kernel-based weight

on auction t.7

Let MT (b | z, r,N ) =
∑

i MiT (b | z, r,N ) be the estimator for the conditional

distribution of the sale price and let M−iT (b | z, r,N ) =
∑

j ̸=i MjT (b | r, z,N )

be the conditional cumulative incidence function for the risk that bidder i loses

the auction. By analogy to equation (13), I then use the MiT estimators to

construct an estimator for the marginal bid distributions,

SiT (b | z, r,N ) = exp

{
−
∫ b̄

b

1

MT (· | z, r,N )
dMiT (· | z, r,N )

}
(6)

= exp

{
−
∑

t MT (pt | z, r,N )−1
1{bit = pt}1{pt > b}wt∑
t wt

}
.

In accordance with part (i) of Lemma 1, this estimator does not depend

on whether i is assumed to be competitive or collusive. Moreover, because it

constructed from the cumulative incidence functions, it depends solely on the

only bids known a priori to be serious—i.e. the winning bids. Consequently,

SiT (b|z, r,N ) is consistent for the marginal distribution of bidder i’s serious bid

under both the null and alternative hypotheses.

Let
Gi,R
gi,R

denote the amount bidder i would be expected to shade its bid if

R is the collusive bidding ring. This quantity can also be expressed in terms of

7If none of the bidders’ valuations exceed the reserve price, I record this as a price equal
to the reserve and the “winner” is the seller.
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the cumulative incidence functions, as in

Gi,R(b | z, r,N )

gi,R(b | z, r,N )
=

 M(b | z, r,N )
/

∂M−i(b|z,r,N )
∂b i ̸∈ R

M(b | z, r,N )
/

∂M−R(b|z,r,N )
∂b i ∈ R

When the reserve price does not bind, a consistent estimator can be obtained

by substituting MT (b | z, r,N ) in the numerator and a kernel estimator for the

derivative of M−i or M−R with respect to b. If the reserve price is binding and

bidding strategies are all strictly increasing, this density will be unbounded near

the reserve price for all i. Consequently, the typical kernel density estimator

will not be consistent.

If the reserve price binds and bidders are symmetric, one can use the change

of variables suggested by Guerre et al. (2000) to create the transformed data,

(
√
pt − rt, rt), whose density can be shown to be bounded everywhere when

bidders are symmetric. One can then apply a boundary correction procedure

similar to Karunamuni and Zhang (2008) on these data to obtain an estima-

tor m∗
−iT (b, z, r,N ) or m∗

−R,T (b, z, r,N ).8 An estimator for the density of the

original data is given by m−iT (b, z, r,N ) =m∗
−iT (

√
b− r, z, r,N )/(2

√
b− r).

To account for the upper boundary of the bid distribution, I first observe

that the maximum bid is an increasing function of the reserve price. There-

fore, the minimal non-decreasing upper envelope of the observed pairs of bids

and reserve prices provides a non-parametric estimator for the upper boundary

of the support of the bids conditional on the reserve price. For example, if

the reserve price serves as the instrument, this envelope function is defined as
ˆ̄b(r,N ) = max {bit : (bit, rt,Nt), Nt = N , rt ≤ r, }.9 One can then apply the

same boundary correction procedure to the sample of pt − ˆ̄b(rt,Nt) to obtain a

consistent estimate of the density for values of b within one bandwidth of ˆ̄b(r).

Finally, the conditional density is consistently estimated by the ratio of

m−iT,R(b, z, r,N ) to a boundary corrected estimator for marginal density (r, z).

Thus, the estimator for
Gi,∅(b | z,r,N )

gi,∅(b | z,r,N ) is given by MT (b | z,r,N )
m−iT (b | z,r,N ) .

8Karunamuni and Zhang (2008) uses a combination of transformation and reflection of the
data to reduce the order of the bias in kernel density estimation near the boundary. Hickman
and Hubbard (2015) first demonstrate its use in application to inference in first-price auctions.
Pinkse and Schurter (2019) observe that the recommended boundary bandwidth sequence in
Karunamuni and Zhang (2008) leads to suboptimal rates of convergence. In this paper, I use
a boundary bandwidth that is proportional to the main bandwidth.

9If z contains other continuously distributed variables in addition to the reserve price,

one can similarly estimate an the upper envelope ˆ̄b(r, z,N) as long as the upper boundary is
monotonic in z, as well.
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Bidder i’s competitively rationalizing valuation in auction t would then be

given by

ṽit,∅ = bit +
MT (bit | zt, rt,Nt)

m−iT,∅(bit | zt, rt,Nt)
.

The right side of (10) may also be used to define an estimator of the inverse

strategy function σ−1
iT . Note that, even though I have previously ignored losing

bids in order to avoid contamination by phantom bids, equation (10) may also

be evaluated at bidder i’s losing bids in order to construct a full sample of

pseudo-values.

If bidders are not symmetric and the reserve price binds, however, the rate

at which the bid densities diverge near the reserve price is not known a pri-

ori. For at most one bidder, the bid density may diverge at a rate faster than

1/
√
b− r, while all other bidders’ bid densities diverge at the same rate slower

than 1/
√
b− r (see Proposition 2 in Appendix A). This creates a boundary is-

sue that cannot be corrected by traditional methods because the transformed

density is potentionally unbounded for one of the bidders.

Instead, I suggest using the estimates of the marginal serious bid distribu-

tions to construct estimates of the equilibrium expected payment function ei

under the null hypothesis as in Pinkse and Schurter (2022):

ei(p|z, r,N ) =

pG
−1
i (p; z, r,N ) , if p ≥ Gi(r|r, z,N )

rp , if p < Gi(r|r, z,N )
(7)

The expected payment function is the amount that a bidder should expect

to pay the seller in equilibrium as a function of the probability with which they

expect to win when they submit their bid. For p < Gi(r|r, z,N ), the expected

payment is undefined because a bidder would never expect to win with that

probability in equilibrium, but it will be convenient to continuously extend ei

and its first derivative by setting ei(p; r, z,N ) = rp for p < Gi(r|r, z,N ).

The expected payment function is useful because its slope is equal to the

bidder’s valuation at the bidder’s optimally chosen win probability. Thus, we

can estimate the inverse strategy function with an estimate of the slope of

e at G−iT (bit|rt, zt,Nt) constructed from the estimates M−iT and MT . This

approach avoids estimating an unbounded derivative because the derivative of

the expected payment function with respect to the probability of winning is

bounded when the reserve price binds Pinkse and Schurter (2022).
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A conventional kernel-smoothed estimate of the slope of e simplifies to a

weighted sum of the observed prices at auctions that bidder i lost. Under the

null hypothesis, an estimator for the slope of ei is given by

e′iT (ρ|r, z,N ) =
1

h2

∫ 1

0

pG−1
−iT (p|r, z,N )K ′

(
ρ− p

h

)
dp . (8)

The natural estimator for G−i under the null hypothesis is the product of bidder

i’s rivals’ marginal serious bid distributions:

G−iT (b|r, z,N ) =
∏
j ̸=i

Sit(b|r, z,N )

= exp

{
−
∫ b̄

b

dM−iT (x|r, z,N )

MT (x|r, z,N )

}

= exp

{
−
∑
t

1{b ≤ pt}1{bit < pt}wt∑
s 1{ps ≤ pt}ws

}
.

Because the estimates of the marginal serious bid distributions and cumulative

incidence functions are step-functions with discontinuities at the observed auc-

tion prices, G−iT is a step function with discontinuities at the observed prices

in auctions in which bidder i lost. The inverse of G−iT is then conventionally

defined as G−1
iT (p|r, z,N ) = inf{b|GiT (b|r, z,N ) ≥ p}, which is another step-

function. Consequently, the integral in the definition of e′it becomes a sum over

prices with weights given by 1
h2

∫ qit
qit−1

qK ′ (p−q
h

)
dq, where qit = GiT (p(t:T )) and

p(t:T ) denotes the t-th order statistic from the sample of T auction prices.10

Hence, an alternative estimator for the competitively rationalizing win prob-

ability and valuation is given by

ρ̂it,∅ = G−iT (bit|rt, zt,Nt) (9)

v̂it,∅ =
∑
t

p(t:T )
1

h2

∫ qit

qit−1

qK ′
(
ρ̂it,∅ − q

h

)
. (10)

10As in the case of the estimator based on the approach of Guerre et al. (2000), some
modifications are required near the boundaries located at zero and one because e(p) is not
defined outside the unit interval. Pinkse and Schurter (2022) develop a boundary correction
analogous to Karunamuni and Zhang (2008), as well as a correction based on boundary kernels.
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Using either estimation estimator for the pseudo-valuations, the inverse

strategy estimate σ−1
iT might be nonmonotonic in finite samples. A monotonic

estimator for the strategy function can be defined as σiT (v; z, r,N ) = inf{v :

σ−1
iT (b; z, r,N ) ≥ v} or as the slope of the greatest convex minorant of the esti-

mated expected payment function (Pinkse and Schurter, 2022). An estimate of

the competitively rationalizing valuation distribution is then given by,11

FiT,∅ (v|z, r,N ) = SiT (σiT (v; z, r,N ) | z, r,N ) .

More generally, the valuation that rationalizes a collusive bid bit when R is the

assumed set of colluders is given by

ṽit,R = bit +
MT (bit|zt, rt,Nt)

m−RT (bit|zt, rt,Nt)

or

ρ̂it,R = G−RT (bit|rt, zt,NT )

= exp

{
−
∑
s

1{bit ≤ ps}1{maxj∈R bjs < ps}ws∑
l 1{pl ≤ ps}wl

}

v̂it,R =
∑
t

p(t:T )
1

h2

∫ G−RT (p(t:T ))

G−RT (p(t−1:T ))

qK ′
(
ρ̂it,R − q

h

)
dq ,

when the alleged colluder i outbids the other members of R, and is otherwise

bounded above by maxj∈R ṽjt,R or maxj∈R v̂jt,R, respectively.

6.3 Uniform Convergence of the Estimators

The estimators for the cumulative incidence functions, MiT (·|z, r,N ), serve as

the building blocks for the estimators defined above. Because these kernel-

based estimators’ asymptotic behavior is well understood, the estimates of Fi,

Gi, and Si will yield similarly well behaved asymptotics if the transformation ϕ

defined by the right-hand side of equation (6) is Hadamard differentiable in the

conditional cumulative incidence functions so that the functional delta method

11The empirical distribution of v̂it is an alternative estimator for Fi under the null hypoth-
esis that bidder i is not colluding. If a bidder is colluding, however, its losing bids might
not have the same distribution as its winning bids, causing these two estimators to diverge.
Similar to the parametric tests in Porter and Zona (1993), a test of equality between these
estimators could be used to test for collusion, but it will fail to detect collusion, for example,
if colluders always bid as if they were independently competing against the non-ring bidders.
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applies. Fortunately, when the reserve price is binding, ϕ is differentiable as a

map into the space of càdlàg functions. Otherwise, when the reserve price does

not bind, some trimming near the minimum observed bid is required in order

to bound the integrand in equation (6).12 The standard uniform rates of con-

vergence for kernel-based estimators will therefore carry through. In particular,

the above estimators will uniformly converge at the optimal rates derived by

Guerre et al. (2000).

Because the estimators defined above employ a second-order kernel, I make

the following assumptions to ensure the cumulative incidence density has two

continuous derivatives.

Assumptions (Smoothing Assumptions).

SA.1 The conditional valuation densities fi(·|·,N ) twice continuously differen-

tiable in the continuous components of Z−i and r and continuously differ-

entiable in vi for all i.

SA.2 The equilibrium bid distributions are atomless.

SA.3 |hM |1/2(log T/T )d/(4+d) → c < ∞ where hM is the bandwidth used to

estimate MiT and d is the number of continuously distributed components

of (Rt, Zt).

SA.4 |hm|1/2(log T/T )(1+d)/(5+d) → c <∞ where hm is the bandwidth sequence

used to estimate miT .

The smoothness assumptions on fi are sufficient forMi(· | ·) to be twice con-

tinuously differentiable in all of its arguments for b > r, but the derivative with

respect to the bid could be unbounded near the reserve price. In addition, one

bidder could have an atom in its equilibrium bid distribution at the minimum

bid (see Proposition 1). To simplify the asymptotic analysis, I assume the re-

serve price binds and focus on the estimator based on the expected payment

function. Though I note that, if needed, the estimator based on the competing

bid density could be used when the reserve price does not bind if one estimates

the location and size of any atom in the equilibrium bid distributions along

with the derivatives of the bid distribution conditional on a bid greater than

the minimum serious bid.

12Marmer et al. (2017) use a trimming sequence to resolve a similar issue in the asymptotic
behavior of their estimator.
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Lemma 3. Under MA.1–MA.5 and SA.1–SA.2, ∂Mi

∂b is twice continuously dif-

ferentiable in its continuous arguments, and ∂ei
∂p is bounded, continuous, and

has two bounded derivatives in all of its arguments.

Theorem 3. Assume the above smoothness and bandwidth conditions and that

r >
¯
vi for all i ∈ N . Suppose Mi(b | ·) has a uniformly bounded and continuous

second derivative in its continuous arguments. The estimators MiT and SiT
converge uniformly in (z, r,N ) to tight objects in the space of càdlàg functions

on (r, b̄], while Fi is uniformly consistent on compact subintervals of (r, v̄i) and

is pointwise asymptotically normal:(
T

log T

)2/(4+d)

(MiT (· | z, r,N )−Mi(· | z, r,N ))⇝Wi(
T

log T

)2/(4+d)

(SiT (· | z, r,N )− Si(· | z, r,N ))⇝ ϕ′(Mi,M)(Wi,W )(
T

log T

)2/(5+d)

∥FiT,R(v| z, r,N )− Fi,R(v| z, r,N )∥∞,V = Op(1)

where ϕ′(Mi,M) denotes the Hadamard derivative of ϕ at (Mi,M), Wi and W =∑
Wi are centered Gaussian processes, and V ⊂ (r, v̄i) is compact.

6.4 Test Statistics

The proof of Theorem 2 demonstrates that bidder i’s competitively rationalizing

valuation distribution, Fi,∅, is independent of the instrument, Zi, if and only if

bidder i is not colluding. An appropriate statistic to test this prediction depends

on whether Zi is binary, discrete, or continuously distributed. If, for example,

the seller randomly decides to “set aside” some auctions for a particular category

of bidder, as is common practice in government procurement (see, for example,

Athey et al., 2013; Krasnokutskaya and Seim, 2011), a test for collusion could

be based on a Kolmogorov-Smirnov-type statistic such as

DiT = sup
v>r

∣∣FiT,∅(v | N )− FiT,∅(v | N ′)
∣∣ ,

where r is minimum value for which Fi is identified for both levels of the instru-

ment, N and N ′.

When the instrument takes on more than two values, generalizations of the

Kolmogorov-Smirnov statistic could be used. Alternatively, Haile et al. (2003)

observe that a test based on the mean valuations may converge at a faster rate.
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They propose an asymptotically chi-square statistic based on the insight that

the mean valuation implied by the IPV model should be strictly decreasing in

the number of symmetric bidders due to the worsening winner’s curse. To adapt

this statistic to a test for collusion, the null hypothesis would be the same, but

the alternative would be the opposite. That is, the mean valuations should

be strictly increasing in the number of symmetric bidders when the bidder is

colluding.

Otherwise, when the instrument is continuously distributed, I propose a test

based on correlations. Although this test would not detect dependence among

higher moments, covariances may be sufficient. When Zi is equal to the re-

serve price, however, testing for dependence is complicated by the fact that

valuations are censored below the reserve, which introduces spurious correla-

tion between the observed Vi,∅ and r. But, unlike the typical random censoring

problem, auction data include the value at which the valuations would have

been censored—i.e. the reserve price. Consequently, the assumption of indepen-

dent censoring can be tested nonparametrically using a conditional Kendall’s τ

statistic.

Formally, I define the conditional Kendall’s τ statistic as

τ̂Ci = τ̂C(v̂i,∅, r) =

∑
t≤s

sign(v̂it,∅ − v̂is,∅) · sign(rt − rs) · Λits∑
t≤s

Λits

,

where Λits is an indicator for the event that both (v̂it,∅, v̂is,∅) and (rt, rs) can be

ordered.13 For example, if v̂it < rt < rs ≤ v̂is, then the summand in the numer-

ator can be evaluated even though v̂it is not observed.14 In general, the pairs

are “orderable” if and only if max{rt, rs} ≤ max{v̂it, v̂is}. This implies that

one of the pseudo-valuations must be uncensored in order for the pair to enter

the summation. Because one of the observations may be censored, however,

the auctions for which bidder i did not submit a bid will be represented in τ̂Ci .

In this sense, τCi incorporates information contained in bidder i’s participation

13A similar statistic has been proposed as a test of independent truncation in medical
trials (see, for example, Tsai, 1990; Martin and Betensky, 2005), but I do not believe that
this particular statistic has been studied. No doubt, this is due to the unusual nature of
the censoring problem induced by binding reserve prices. In the context of a medical trial,
it would correspond to the situation in which the statistician observes the times at which
subjects would have dropped out of the study if they had not experienced the event under
study, e.g. disease progression or death.

14I assume a bidder with a valuation equal to the reserve price submits a bid.
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decisions.

If bidder i’s valuations were directly observed, this statistic would have an

expected value of zero under the null. This can be easily verified by noting the

summand evaluates to 1 in six of the twelve orderable permutations and to −1

in the other six. The mean is therefore zero under the null hypothesis because

each concordant permutation is equally likely to occur as one of the discordant

permutations when valuations are independent of reserve prices. Moreover,

because τ̂C(vi,∅, r) is the ratio of two U-statistics, its asymptotic normality

would immediately follow.

Inference using τ̂Ci is complicated by the fact that the pseudo-observations,

v̂it,∅, are estimated. Nonetheless, Proposition 3 in Appendix A establishes that

τCi zero under the null hypothesis and the estimator is asymptotically linear

and asymptotically normal if the kernel bandwidth is o(T−1/4) so that the bias

introduced by estimating the pseudo-valuations with second-order kernels is

asymptotically smaller than T−1/2. Asymptotic linearity and normality of the

estimator then implies the validity of the bootstrap Gill (1989). In appendix B,

I report results of simulations that demonstrate asymptotic size control using

bootstrapped critical values.

Inference may also be affected by the fact that the conditional Kendall’s τ

estimator might converge at the same rate as the homogenized bids if a bid

homogenization step is required. In the empirical application in this paper, I

ignore this additional source of sampling variation when estimating critical val-

ues for the conditional Kendall’s τ statistic because I use orders of magnitude

more prices to homogenize the bids than there are uncensored pseudo-valuations

available to compute the Kendall’s τ statistic for any individual bidder i. The

errors in the estimation of the τ statistic and the inverse bidding strategies

given the homogenized bids is likely to be large relative to the estimation er-

ror in the homogenized bids themselves, although their variance is on the same

order according to my asymptotic framework. In applications with more bids

per bidder relative to the number of auctions, the sampling error in the bid ho-

mogenization step is likely to be non-negligible. Depending on the details of the

bid homogenization step, one might prove consistency of the bootstrap critical

values by demonstrating the bid homogenization estimator composed with the

asymptotically linear conditional Kendall’s τ estimator yields an asymptotically

linear multistep estimator.
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7 Testing and Confidence Bounds on the Cost

of Collusion

To account for the fact that multiple hypotheses are tested simultaneously, I

suggest a testing procedure that asymptotically controls the family-wise error

rate (FWER)—i.e. the probability of making one or more false rejections. The

power to detect collusion would be greater under alternative testing procedures

that control less stringent error rates, such as the false discovery proportion.

The FWER is convenient, however, because it lends itself to the construction

of confidence bounds on the cost of collusion.

If α is the chosen tolerance for the FWER, the set of rejected hypotheses

forms a lower confidence bound on the set of colluders, i.e.

lim inf
T→∞

P{RT ⊆ R0} ≥ 1− α , (11)

where R0 is the true collusive ring and RT is the set of bidders for whom the

null hypothesis is rejected given data from T auctions. Then, because the cost of

collusion is monotonic in the ring (with respect to set inclusion), this translates

into a lower confidence bound on the cost of collusion:

lim inf
T→∞

P{C(RT , F ) ≤ C(R0, F )} ≥ 1− α , (12)

where C(R, F ) is the difference between the seller’s expected revenues when the

bidders in R are or are not colluding and bidders’ valuations are jointly dis-

tributed according to F .15 The function C does not typically have an analytic

expression, but its value at (RT , F ), and hence a lower confidence bound on the

true cost of collusion, can be found numerically. Of course, this estimator is

infeasible because F is not observed. The unknown joint valuation distribution

must be replaced by a consistent estimator, which will generally differ from the

joint distribution that rationalizes the data under the assumption that RT is

the set of colluders. Because equilibrium strategies are continuous in F with

respect to the weak topology (Lebrun, 2002), a consistent “plug-in” estima-

tor for C(RT , F ) is obtained by numerically evaluating C(RT ,FT,R̂) for some

consistent estimator of the ring, R̂.

15This counterfactual assumes the set of potential bidders would not be affected by the
dissolution of the collusive ring. If some firms would exit the industry in response to the
stronger competition, then this counterfactual would overstate the revenue gains to eliminating
collusive behavior.
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8 The British Columbian Timber Market

8.1 Background

British Columbia’s Ministry of Forests manages 95% of the province’s timber

supply. Its annual revenues averaged US$1.1 billion between 1996 and 2000, of

which $210 million was raised by auctioning timber licenses under the Small

Business Forest Enterprise Program (SBFEP). These licenses grant the right to

harvest timber from designated areas during a specified period of time, typically

lasting about one year and no more than four years. Though these auctions

directly accounted for less than 20% of its revenue, the auction prices affected

the index that the Ministry used to benchmark its prices for all other timber

licenses. Therefore, a natural question is whether the auction prices accurately

reflect the fair market value of the harvesting rights.

Two papers address this question in reduced form analyses (List et al., 2007;

Price, 2008). Both find evidence consistent with the hypothesis that some of

the firms in this sample are colluding. On the other hand, in technical reports

prepared for the Ministry of Forests, Athey et al. (2002) and Athey and Cram-

ton (2005) argue that their proposed auction reforms would reduce the benefit

of anti-competitive bidding to the point that collusion would have to be perva-

sive within a local market and sustained over at least three years in order to

significantly influence the market price for timber. Given the large number of

small logging firms that could enter the market if firms successfully conspired

to keep prices down, they conclude that collusion to this extent is implausible.

In light of this debate, I apply the identification strategy in this paper to

assess the competitiveness of the SBFEP auctions between 1996 and 2000 and

estimate the effect any collusion may have had on the auction prices.

8.2 Bidding Procedures and Identifying Variation

The auctions in the data were conducted under the auspices of the SBFEP.

The regional SBFEP offices published a list of the timber licenses to be sold

at auction. Prior to each auction, the regional office would specify which firms

were eligible to bid. To be eligible to bid, a firm had to be registered with the

SBFEP and hold no more than two outstanding timber licenses. In addition, the

SBFEP announced whether registrants that owned or leased their own milling

facilities would be eligible to participate. Firms with milling capabilities were

excluded from about 80% of the auctions between 1996 and 2000.
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When the regional offices solicited bids, they included several documents

containing details about the timber license. These included survey maps, plans

for extracting the logs, the estimated volume of merchantable timber by tree

species, and projected road development costs. Along with these supporting

documents, the office calculated a reserve price per cubic meter of harvested

timber in accordance with one of the two appraisal methods described below.

Firms were also invited to inspect the tract themselves.

At any time before the auction closed, interested firms could submit a sealed

“bonus” bid equal to the amount that they would pay above the reserve price.

The regional office then opened and recorded all of the bids and awarded the

license to the highest bidder. All of the bids and the identities of the bidders were

publicly announced at this time. Throughout logging operations, the winner

paid an amount per cubic meter of harvested timber equal to the reserve price

plus its bonus bid.16

Substantial variation in the reserve prices allows me to test whether col-

lusion played a role in keeping the Canadian lumber prices below prices in

the United States during these years immediately proceeding a lumber trade

dispute between the US and Canada. For timber appraised using the old non-

hedonic pricing formula, the reserve price was set at a fixed fraction of the

timber’s estimated price per cubic meter.17 This estimated price was computed

as the difference between the tract’s appraised value and the average value of

licenses sold in the region, plus a base rate that was determined by the Revenue

Branch. The base rate was adjusted quarterly depending on how the prices of

active licenses compared with the Ministry’s target rate, which in turn was a

piecewise-linear function of a weighted average of British Columbia’s lumber

and wood chip price indices. In addition, the regional office could increase the

reserve price to reflect their silvicultural or development expenses. In practice,

however, these adjustments were not made in auctions that excluded firms with

milling capabilities. As a result of all these modifications to the ministry’s initial

appraisal, I observe auctions in which my estimate of the value of the licenses

are similar while their reserve prices greatly differ.

In response to this exogenous variation in appraisals, market participants ap-

pealed to the Ministry to improve its appraisal methodology to more quickly re-

16As a condition of the license, the winner agrees to pay penalties for unharvested timber.
17The details of this appraisal process are contained in the annually updated Interior Ap-

praisal Manual. The appraisal manual that took effect on October 1, 1999 (Canada. B.C.
Ministry of Forests, 1999) describes the reserve pricing policies for timber licenses appraised
using either of the two methods.
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spond to changes in market conditions. Beginning in 1999, the Ministry adopted

a hedonic pricing formula and generally set the reserve price at 70% of the ap-

praised value without the option of adjusting for silvicultural and development

expenses. This change in the reserve pricing policy relative to the pre-1999

method provides further exogenous variation. Moreover, the hedonic pricing

formula was modified in 2001, soon after the period under investigation. Thus,

to the extent that the formula needed improving, the auctions conducted in

later years may still be expected to contain exogenous variation in the reserve

price.

9 Analysis

9.1 The Modeling Assumptions

In the empirical framework, the valuations are assumed to be private, indepen-

dent across firms, independent of the district in which the firm competes, and

independent across auctions after controlling for the observed auction covariates.

In the context of British Columbia’s timber auctions, the firms’ valuations

are likely to be private because there is no active spot market for harvested

timbers and the winner only pays for the amount of timber that they actually

harvest.18 Loggers typically negotiate bilateral supply agreements with local

mills before bidding in an auction. Therefore, the firms know the price per

cubic meter at which they would be able to sell the logs if they were to win

the auction. Furthermore, because the winners’ payments to the Ministry of

Forests are based on the actual merchantable volume of harvested timber, as

opposed to the estimated volume of timber, they do not bear risk regarding

the total merchantable volume covered by the license. Firms are also largely

insured against uncertainty about the composition and quality of the timber

because the Ministry fixes the stumpage rate for low-quality timber and timbers

used for fence posts or other specialty products. Consequently, the bids only

apply to good quality coniferous sawlogs.19 Lumber produced from different

18The data come from the interior region of British Columbia. There is a spot market for
timber in the coastal region.

19If the Ministry sets the price for low-grade and specialty timbers too high (or low) relative
to a bidder’s valuation, the bidder would have an incentive to decrease (increase) its bid on
licenses containing a higher proportion of that timber. In an attempt to determine whether
this is an issue, I test whether the proportion low-quality timber that was actually harvested
is correlated with the auction price after controlling for the license characteristics as in Ap-
pendix C. Though I only observe the volume of harvested timber for a subset of the auctions
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tree species within this category are typically substitutable in their commercial

uses, so variation in the species composition should not greatly affect the bidders’

valuations for the license.20 Moreover, firms are not likely to have significantly

different information about the species composition (Paarsch, 1997). Therefore,

the winner’s curse is unlikely to be an important factor in the firms’ bidding

strategies.

Nonetheless, the firms’ willingness to pay for a license are certainly correlated

through observable characteristics of the timber license. I assume, however, that

the idiosyncratic components of their valuations are independent conditional on

these characteristics. Given the rich set of covariates in my data, I argue that

this is plausible. Indeed, I condition on the same set of covariates that the Min-

istry of Forests used to appraise the licenses. In Appendix C, I estimate my own

appraisal of the timber licenses and find that it better predicts the winning bids

than the Ministry’s appraisal. I maintain, however, that the Ministry selected

an appropriate set of variables to include in their hedonic pricing model even

though their exact formula could be improved by accounting for the selection

problem introduced by the binding reserve price.

The IPV assumptions are consistent with prior studies of these auctions,

but I depart from earlier work by relaxing the symmetry assumption and al-

lowing marginal valuation distributions to differ across firms. Such asymmetry

might arise, for example, from differences in expertise or relationships with

mills. These asymmetries could be significant considering the fact that firms’

participation decisions vastly differ and are not explained by observable differ-

ences in their characteristics. The majority of firms participated in very few

auctions, and won at most once between 1996 and 2000. In contrast, there are

only nine firms that won more than 10 auctions. These firms appear to rely

on the SBFEP auctions much more than the less active firms, and could have

different relationships with mills than the fringe competitors do.

In order to pool data across districts in the estimation, I assume that the

bidders’ valuations are independent of the district in which the auction takes

place. While this assumption is consistent with earlier work (Paarsch, 1997;

List et al., 2007; Price, 2008), it would not be palatable if the distance from the

firm’s headquarters to the harvesting site were correlated with the unobservable

in the sample, the proportion of low-quality timber is not significantly correlated with the
unexplained variation in the winning bids.

20Tree species differ in the amount of lumber that can typically be recovered from a sawlog of
a given volume. The Ministry controls for this heterogeneity by using species-specific lumber
recovery factors to calculate a lumber price index for each auction.
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variation in the firm’s harvesting costs. Because the data include the cycle

time—the estimated time necessary to transport the timbers to the nearest

point of appraisal—I maintain the assumption that the headquarters-to-site

distance is not correlated with the cost of extracting the timber conditional on

the observable covariates. See appendix D for details on the clustering algorithm

used to pool districts into markets.

Finally, I ignore any inter-auction dynamics that may be induced by capacity

constraints and the Ministry’s cap on the number of outstanding licenses that

firms can hold. A firm’s bidding strategy would then depend on the current

state of the market, which might be summarized by the characteristics of future

auctions that have already been scheduled, expected characteristics of auctions

that have not been announced, and all of the firms’ backlogged workloads. I

observe the time series of auction characteristics and could assume that firms

have rational expectations for the licenses that are likely to come to auction

in the future. But, as discussed in the previous section, I only have noisy

measures of the firms’ backlogs. If they were observable, auction dynamics could

be accounted for as in Jofre-Bonet and Pesendorfer (2003). This approach,

however, would be limited by the infrequency with which bidders participate

in auctions, the high dimensionality of the state vector, and the unobservable

asymmetries among the bidders.

9.2 Using Participation Decisions to Test for Collusion

The typical bidder participates in a small fraction of the auctions for which it

appears to be eligible. Much of this can be explained by geography: bidders

typically focus their activities in one or two neighboring districts. As a first

approximation to their true participation decision process, I assume that firms

never considered participating in auctions outside of the districts in which they

were active. Still, some firms only bid in a nearby district a few times, so

firms might not have been potential entrants in every auction in that district. I

therefore define a firm as being active in a district only if it participated in at

least 5% of the auctions for which my data indicates it was eligible.21

Yet, even in the districts where they are most active, firms typically partic-

21To construct a proxy for a firm’s eligibility, I track all of the SBFEP licenses it has won
but have not yet expired. If I observe a firm bid in an auction when my data suggest it has
three outstanding licenses, I presume that it completed logging operations on one of them so
that, in fact, it only has two outstanding licenses. If it does not win the present auction, then
it will be eligible to bid in subsequent auctions.
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ipate in less than a third of the auctions for which they appear to be eligible.

To rationalize this behavior, I therefore rely on the fact that the reserve price is

often binding.22 The binding reserve price creates a censoring problem in which

the valuations are left-censored at the reserve price but the value at which they

would have been censored is always observed. Thus, the data for bidder i con-

sists of (max{v̂it,∅, rt}, rt) for auctions t in districts where bidder i was active

or in which bidder i participated. Given these data, there are several ways to

test for dependence between v̂it,∅ and rt, but I have found that a conditional

Kendall’s τ estimator performs well in simulations.

More precisely, this testing procedure performs well in simulations where

each bidder is a potential entrant in all of the simulated auctions. In the present

application, however, it is possible that a bidder’s participation decision was

affected by unobservable factors, such as the number of non-SBFEP contracts

held by the bidder at the time of bidding. As a more conservative approach to

the testing problem, it may be prudent to ignore any information that might or

might not be contained in bidder i’s participation decision.

In this case, the data for bidder i would consist only of (v̂it,∅, rt) | vit,∅ ≥ rt,

which is precisely the typical case of left-truncation discussed in Tsai (1990) and

Martin and Betensky (2005). An appropriate test statistic would then be defined

analogously to τ̂Ci above, except that Λts is replaced by an indicator for the event

that max{rt, rs} ≤ min{v̂it, v̂is}. In words, the pair (t, s) is only included in the

computation of τ̂Trunci if the estimated valuations are “comparable” in the sense

that i’s valuation was uncensored in both auctions and would have remained

uncensored if the reserve prices were interchanged. Because this condition is

more restrictive, τ̂Trunci uses less of the data to test the null hypothesis. As a

result, it will generally be estimated with less precision but will avoid any bias

that comes from erroneously assuming that valuations were censored.

I use τ̂Trunci to denote this statistic, where the superscript indicates that

22Alternatively, the lack of participation could be explained if participating in auctions
is costly either because firms incur costs in order to evaluate the timber license and learn
their valuation or because the process of submitting a bid is costly. The identification and
estimation strategies disucssed above can be adapted to cases in which bidders face entry costs
as long as the screening value for each bidder i, i.e. the lowest valuation for which bidder
i chooses to enter the auction, can be estimated. For example, if bidder i faces a constant
entry cost ci across auctions, its screening value is identified from its conditional competing
distribution Gi(·|r, c, z,N ). The conditional Kendall correlation between the screening value
and the competitively rationalizing valuations could then be used to test for collusion by
bidder i.

In these data, there are no direct costs of participating in an auction (apart from a refundable
deposit), and the cost of evaluating the timber license is likely to be significantly reduced
because the Ministry of Forests’ shares detailed information with all potential bidders.
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τ̂Trunci is a function of the truncated data (v̂it,∅, rt)|vit,∅ ≥ rt as opposed to τ̂Ci ,

which uses the full sample of censored pseudo-valuations and reserve prices. The

population parameter τTrunci (Vi,∅, r) is defined analogously.

Finally, another shortcoming of the data is that I do not observe auctions

that did not receive any bids. Thus, the empirical distribution of prices is condi-

tional on the event of a sale, which would lead me to overestimate the strength

of the bidders’ competing distributions. To avoid this bias, I estimate the prob-

ability that bidder i participates conditional on the reserve price and the event

that at least one other potential bidder submits a bid. If i does not coordinate

its participation decision with anyone else and valuations are independent of

each other and the reserve price, this consistently estimates bidder i’s uncon-

ditional probability of entry. Similarly, the probability of entry by at least one

other bidder besides i can be estimated from the observed data regardless of

any collusion among i’s competitors. Given these probabilities, I then estimate

the probability of sale conditional on r and recover the unconditional price dis-

tribution and cumulative incidence functions. The hypothesis test for bidder i

built on this approach will asymptotically control size. Furthermore, one can

control the FWER in a multiple hypothesis testing framework by re-estimating

the conditional probability of sale under each null hypothesis that bidder i is

not colluding with anyone else. In the results presented in the next section,

I alternatively assume the largest bidders’ entry decisions are independent of

the event that at least one of the competitive fringe of relatively inactive firms

chooses to participate.

9.3 Hypothesis Test Results

Following List et al. (2007) and Price (2008), I restrict my analysis to auctions

in which the estimated timber volume was greater than 1,000 m3. I further

restrict the analysis to auctions that exclude firms with milling capabilities.23

I formulate a test of the null hypothesis that bidder i is not colluding either

as a two-sided test of τC(Vi,∅, r) = 0 against τC(Vi,∅, r) ̸= 0 or as a test of

τextTrunc(Vi,∅, r) = 0 against τTrunc(Vi,∅, r) ̸= 0.24 To asymptotically control

23Upstream logging firms and vertically integrated mills might bid differently when com-
peting against each other because the auction outcome could be relevant to price negotiations
related to other timber harvest from other tracts. The static auction model presented in this
paper is likely better suited to auctions among loggers.

24The conditional statistics, τC and τTrunc, need not have the same sign as the unconditional
τ . Although the unconditional τ should be positive if a bidder is colluding, the sign of τC

and τTrunc is ambiguous.

36



the probability of making one or more false rejections, I adopt the bootstrap-

based multiple testing procedure in Romano and Wolf (2010).

As a final consideration before applying the testing procedure, I must decide

which null hypotheses to test because there are not enough data to simultane-

ously test for collusion by all of the firms while controlling the FWER. Indeed,

more than 1,400 firms bid in a SBFEP auction between 1996 and 2000, but most

of these firms participated in three or fewer auctions. Moreover, if the ultimate

goal is to estimate the cost of collusion, this comprehensive analysis would not

be optimal because the estimated effect on expected revenue is minimally af-

fected by whether one of the small firms is colluding. The confidence bound on

the cost of collusion can be improved by judiciously allocating statistical power

across the individual hypotheses.

Developing an adaptive procedure to estimate optimal weights and maximize

the weighted average power of the test is outside the scope of this paper. Instead,

I essentially set the weights equal to zero for small firms and simultaneously test

the null hypothesis for only the 18 firms that bid in more than 30 auctions and

won more than five of them. The precise thresholds are arbitrary, but as long

as they are chosen in a manner that is independent of the test statistics, the

procedure described above will asymptotically control the FWER.

The results of the testing procedure are reported in Table 1.25 The marginal

p-values for each firm are estimated from 40,000 bootstrap samples, while the

adjusted p-values are equal to the smallest α for which the multiple testing

procedure would have rejected the null hypothesis for firm i while controlling

the FWER at level α.

The choice of test statistic has a large impact on the decisions to be made for

each null hypothesis. I argue that τ̂Ti is more defensible because it is more robust

to misspecification in the bidders’ participation decisions. Thus, according to

this preferred specification, the null hypothesis for firms 1–4 can be rejected at

the 0.05 level of significance, while the null hypothesis for firm 5 is rejected at

the 0.10 level. Firms 1–4 form a lower 95%-confidence bound on the set of firms

that colluded in the SBFEP auctions.

One drawback to my detection method is that the results could be difficult to

25The diagonal entries in Table 2 indicate the total number of pseudo-valuations used to
estimate the conditional Kendall’s τ statistics. The bandwidth sequence for smoothing over
reserve prices was somewhat arbitrarily chosen to be equal the scaling factor implied by
Silverman’s rule of thumb multiplied by T−1/3.9 instead of the optimal rate. The bandwidth
sequence used to estimate the derivative of the equilibrium expected payment function is

1.4T
−1/3.9
im where Tim is the number of auctions in market m that i lost.
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Table 1: Results from simultaneous tests of the null hypotheses that bidder i is
not colluding. Each test is formulated as a two-sided test for positive correla-
tion between the reserve price and the valuations that rationalize i’s bid. The
p-values are estimated from 40,000 bootstrap replicates. The marginal p-values
indicate the level of significance in an individual test of the hypothesis for bid-
der i. To generalize the concept of p-values in the multiple hypothesis testing
framework, the adjusted p-values indicate the smallest level of tolerance for one
or more type I errors at which the null hypothesis for bidder i can be rejected.

τ̂Ti τ̂Ci

Marginal Adjusted Marginal Adjusted

1 <.001 <.001 >.999 >.999
2 <.001 .002 >.999 >.999
3 .001 .020 .998 >.999
4 .002 .030 .772 >.999
5 .006 .095 .474 >.999
6 .013 .208 .356 >.999
7 .019 .290 .986 >.999
8 .021 .313 .932 >.999
9 .022 .330 .986 >.999
10 .051 .600 .370 >.999
11 .054 .621 .978 >.999
12 .059 .657 .571 >.999
13 .072 .730 .063 .679
14 .136 .920 .199 .977
15 .193 .975 .939 >.999
16 .200 .978 .716 >.999
17 .721 >.999 .597 >.999
18 .943 >.999 .988 >.999
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interpret. If, for example, only one null hypothesis is rejected, then the test does

not indicate with whom they might be colluding. Similarly, if the test detects

collusion by more than one firm but they only ever bid in very distant markets,

then they would have very little incentive to collude. This would cast doubt on

the interpretation of the test as a test for collusion. To address this concern,

Table 2 tabulates the number of times that each of the 18 firms bid in a district

where one of the other bidders was active. These patterns demonstrate that

the firms are indeed active in the same districts as other suspected colluders.

Although firms 1 and 2 did not submit bids in the same districts, they did

compete in similar districts that were three of the first to be grouped into the

same market by the hierarchical clustering algorithm.26

Table 2: Each row i tabulates the number of times firm i bid in a district where
each of the other firms is active. For example, firm 1 bid 36 times in districts
where firm 3 was active, whereas firm 3 bid 19 times in districts where firm 1
was active.

Firm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 36 0 36 36 0 36 36 36 17 0 36 0 0 0 0 0 0 19
2 0 58 40 7 0 4 4 50 58 4 11 0 3 19 3 0 48 4
3 19 8 28 21 0 21 22 25 20 2 21 0 0 2 0 0 5 9
4 11 17 23 34 0 24 25 24 19 12 27 0 0 17 0 0 17 23
5 0 0 0 0 42 0 0 0 0 0 0 37 0 0 0 42 0 0
6 37 2 39 40 0 42 42 41 11 2 41 0 0 2 0 0 2 31
7 8 10 19 27 0 27 39 21 13 10 26 0 0 10 0 0 10 34
8 28 26 49 48 0 49 51 58 30 19 51 0 0 25 0 0 22 44
9 1 33 10 14 0 3 3 20 35 2 9 0 3 24 3 0 25 2
10 0 32 32 32 0 32 32 32 32 32 32 0 0 32 0 0 32 32
11 21 3 22 23 0 23 24 25 5 1 32 0 0 3 0 0 3 21
12 0 0 0 0 38 0 0 0 0 0 0 38 0 0 0 38 0 0
13 0 1 0 0 0 0 0 0 31 0 0 0 31 0 31 0 0 0
14 0 53 45 49 0 45 45 49 53 45 47 0 0 53 0 0 51 45
15 0 4 0 0 0 0 0 0 14 0 0 0 14 0 31 0 0 0
16 0 0 0 0 10 0 0 0 0 0 0 3 0 0 0 38 0 0
17 0 35 16 18 0 13 13 30 35 13 27 0 0 32 0 0 35 13
18 6 10 16 28 0 21 36 23 10 10 19 0 0 10 0 0 10 36

Having rejected the joint null hypothesis that all of the bidders are compet-

itive, a logical question is whether a collusive model can better fit the data. In

particular, the question is whether assuming firms 1 through 4 are members of a

collusive bidding ring makes the estimated Kendall’s τ statistics less significantly

positive. To that end, I perform the testing procedure again, but instead use

the valuations that rationalize the observed bids when R = {1, 2, 3, 4}. The test
26Firm 1 competed exclusively in the Kamloops and Clearwater districts, while firm 2 bid

in the 100 Mile House district and six other districts in three other markets.
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statistic is unaffected for the non-ring bidders i ̸∈ R. In contrast, the collusive

bidders’ pseudo-valuations are greater to the extent that they win in the same

market because their competing distribution is weaker than those estimated

under the null hypothesis. Furthermore, the pseudo-valuations are censored at

zit = max{rt, v̂jt : j ∈ R, j ̸= i} rather than rt because any phantom bids

might be unrelated to the bidders’ valuations.27 Then, under the maintained

assumptions that the true valuations are mutually independent and independent

of the reserve price, the test statistic should be equal to zero if R is the true set

of colluders. The estimated p-values for the tests for firms 1–4 are reported in

Table 9.3

There are two caveats in interpreting the results of this exercise. First,

the p-values in Table 9.3 should be treated with caution, because they do not

account for the manner in which I selected the configuration of the ring to test.

Rather, this exercise provides qualitative evidence that collusion helps explain

the firms’ responses to variation in the reserve prices. Second, I cannot eliminate

the possibility that alternative modeling assumptions might generate data that

are observationally equivalent to collusive equilibria of my model.

Table 3: The same procedures are used to determine whether a model with
collusion better predicts bidders’ responses to variation in the reserve prices.
The estimated adjusted p-values suggest that an alternative model in which
firms 1–4 collude efficiently is slightly more consistent with the observed bidding
behavior.

Firm
Model 1 2 3 4

R = ∅ <.001 .002 .020 .030
R = {1, 2} .004 .002 .040 .041

To estimate a 95%-confidence bound on the cost of collusion in the typi-

cal auction where suspected colluders are active, I use the estimated valuation

distributions that rationalize the bids when firms 1 and 2 are assumed to be

colluding to compute the effect of collusion on the expected revenue.28 In this

27Recall that v̂jt > v̂it if and only if vjt > vit when i and j are members of the ring because
their estimated inverse bidding strategies are numerically identical and strictly increasing.
That is, v̂jt > v̂it if and only if bjt > bit. Hence, there is no error in observing the event that
a colluder’s valuation is censored.

28I cannot avoid modeling the firms’ participation decisions for the purposes of estimating
the private valuation distributions. Though the private valuations are identified from the
winning bids, the data do not include enough wins by each firm to produce reliable estimates.
Instead, I use a Kaplan-Meier estimator based on the full vector of bids and participation
decisions. I assume that the firm’s valuation was censored at the reserve price if it did not
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typical auction in the market in which both firms were active, the reserve price

is $15.6/m3 below my estimated appraisal. I therefore include firms 1–4 in the

set of eligible bidders along with a group of competitors, that, for simplicity,

are assumed to be symmetric and to belong to the competitive fringe consisting

of firms who did not participate more than 30 times and win more than five

licenses. I then solve for the equilibrium bid distributions with and without

collusion among bidders 1–4 using the numerical methods described in the Ap-

pendix E. After adding enough competitive fringe bidders to match the median

price in the market in which all four firms were active, I find that the median

revenue increases by $3.10/m3 when firms 1–4 bid competitively, which amounts

to 6.6% of the median price in that market.

10 Discussion and Extensions

In first-price auctions, the competitive and collusive models imply different com-

parative statics because they predict different changes in the distribution of each

bidder’s highest competing bid. Therefore, a test for collusion may be based

upon a test of whether the competitive model rationalizes a bidder’s response

to exogenous variation in its competing distribution. The results of this analy-

sis indicate four of the most active firms in British Columbia’s timber auctions

may have colluded. To obtain a lower 95%-confidence bound on the cost of

collusion, I estimate their effect on the median revenue in a typical auction to

be $3.10/m3.

Any hypothesis test is a joint test of all of the modeling and identification

assumptions. Thus, a rejection of the null hypothesis could be a rejection of

any of the baseline modeling assumptions or of the exogeneity of the instru-

ment. Nonetheless, my identification strategy may be practicable when exoge-

nous variation in competition is already available or when the seller is willing

to purposely introduce randomness into its reserve price or set-aside program

in order to detect collusion.

Regarding the validity of the modeling assumptions, one might be able to

rule out alternative explanations based on the sign of the test statistic. For

example, a colluder’s competitively rationalizing valuations should be stochas-

tically greater if the level of competition increases, but they will be negatively

related if the bidder is actually competitive and risk averse. A one-sided test

bid in a district where it participates at least 5% of the time that it is eligible.
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would then control the probability of type I errors even when the bidders’ pref-

erences are misspecified.

Furthermore, one can adapt the same procedures used to test the compet-

itive model to test whether an IPV model with collusion rationalizes bidders’

responses to the observed variation in the level of competition. The other mod-

eling and identification assumptions remain the same. Thus, if the test fails to

reject any of the null hypotheses when the bidders in R are assumed to be col-

luding but rejects the null hypotheses of those bidders when the ring is assumed

to be empty, this finding would be consistent with the interpretation that the

original hypotheses were rejected due to collusion.

Appendix F considers extensions to the model that would allow for un-

observed auction-level heterogeneity and affiliation in the private valuations.

Though an alternative strategy could control the probability of falsely accusing

bidders of colluding when valuations are affiliated, further research is needed to

determine whether a consistent test for collusion exists in this context. More-

over, the cost of collusion is generally not identified from the observables consid-

ered in this paper. On the other hand, the distribution of unobservable auction-

level heterogeneity could be identified as in Krasnokutskaya (2011) or Roberts

(2013) if an auxiliary measure of this heterogeneity is observed. Having isolated

the distribution of auction-level heterogeneity, one could then identify the cost

of collusion as above. In the appendix, I explain why I believe these methods

are inappropriate in the present application. Thus, to the best of my knowledge,

I employ a minimal set of assumptions to nonparametrically estimate the cost

of collusion in British Columbia’s timber auctions.
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A Propositions and Proofs

proof of Lemma 1. Let Mi(b) = P{Bi ≤ b, maxj ̸=iBj ≤ Bi} denote the proba-

bility of the event that bidder i wins the auction and the price is less than or

equal to b.29 If i is a member of the bidding ring, this event is equivalent to the

event {
σi(Vi) ≤ b, max

j ̸∈R
σj(Vj) ≤ σi(Vi), max

k ̸=i∈R
vk ≤ vi

}
,

where σi(vi) denotes the bid that a collusive bidder would have submitted if the

other colluders’ valuations had been less than vi. Otherwise, when i is not in

the ring, it is equivalent to the event{
σi(Vi) ≤ b, max

j ̸=i ̸∈R
σj(Vj) ≤ σi(Vi), max

k∈R
σk(Vk) ≤ σi(Vi)

}
.

In either case, because each member of the ring uses the same increasing bidding

strategy, both events are equivalent to{
σi(Vi) ≤ b, max

j ̸=i
σj(Vj) ≤ σi(Vi)

}
.

Under the assumption that the valuations are mutually independent, the func-

tions Mi for i ∈ N can then be used to construct Si, the marginal distribution

of σi(Vi). In words, Si is the distribution of the bid that bidder i would submit

if it were bidding competitively.

Si(b) = exp

{
−
∫ b̄

b

1

M
dMi

}
, (13)

where M =
∑

iMi is the distribution of auction prices. An analogous construc-

tion was proven by Berman (1963) and was introduced to the empirical auction

literature by Athey and Haile (2002). This proves (i).

Under the null hypothesis that i is not colluding, the distribution of the

29The probability that there is a tie in the winning bid is zero, except possibly at a price
equal to the minimum bid in the case where the minimum bid is an atom of the bidders’
valuations distributions. In that event, ties are broken randomly.
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highest bid among i’s competitors is

Gi =
∏
j ̸=i

Sj , (14)

Plugging (13) into (14), the inverse strategy can be written as

σ−1
i (b) = b+

M(b)
∂M−i(b)

∂b

,

where M−i =
∑

j ̸=iMj . By proposition 1, σ−1
i is increasing in b for b ≥

¯
b.

Therefore, identification of Fi on [σ−1
i (

¯
b), v̄i] follows from

Fi(σ
−1(b)) = Si(b) . (15)

This proves (ii).

proof of Lemma 2. The “if” direction follows immediately from Lemma 1 and

IA.2. The proof of the “only if”direction mirrors Figure 1. First, I derive an

expression for the horizontal distance between the competitively rationalizing

distribution (dashed curves) and the true distribution (dotted curve) in Figure

1. In keeping with part (ii) of the lemma, this horizontal difference is zero

for all values of the instrument if the bidder is not colluding. Otherwise, the

collusive bidders’ true valuation distribution will stochastically dominate the

competitively rationalizing distribution.

To see this, I let F̂i, Ĝi and ĝi denote the valuation distribution and com-

peting distribution and density that are inferred under the null hypothesis that

i is not colluding. I also suppress the argument and the conditioning on Z and
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let 1 denote the identity mapping b 7→ b.

F−1
i − F̂−1

i =

(
1+

Gi

gi

)
◦ S−1

i −

(
1+

Ĝi

ĝi

)
◦ S−1

i

= S−1
i +

Gi(S
−1
i )

g(S−1
i )

−

(
S−1
i +

Ĝi(S
−1)

ĝ(S−1
i )

)

=
1

gi(S
−1
i )

Gi(S
−1
i )

− 1

gi(S
−1
i )

Gi(S
−1
i )

+
∑

j ̸=i∈R

fj(b+
Gi

gi
)

Fj(b+
Gi

gi
)

∣∣∣∣
S−1
i

· ∂
∂b

(
b+

Gi(b)

gi(b)

) ∣∣∣∣
S−1
i

=
1

1

/(
F−1
i −

(
1+

Gi

gi

)−1 ∣∣∣∣
F−1

i

)

− 1

1

/(
F−1
i −

(
1+

Gi

gi

)−1 ∣∣∣∣
F−1

i

)
+
∑

j ̸=i∈R

fj(F
−1
i )

Fj(F
−1
i )

/
∂

∂v

((
1+

Gi

gi

)−1

(v)

)∣∣∣∣
F−1

i

.

The first equality holds by the GPV equation. The S−1
i cancel in the second

line. In the third line, I use independence of the valuations to decompose ĝi/Ĝi

into the reverse hazard rate of i’s true competing distribution and the reverse

hazard rates of the other colluders’ bids. I also use the fact that the ring

members would use the same inverse strategy function (1+Gi/gi) if they were

submitting a serious bid. The last equality again holds by the GPV equation

(15).

This final expression only depends on the true valuation distribution and se-

rious strategy function. And, because σi = (1+ Gi

gi
)−1 < 1 and fj/Fj is greater

than zero, it implies that F−1 − F̂−1 is positive. Moreover, this difference is

decreasing in both the slope and the level of σi evaluated at the quantile of i’s

true valuation distribution. That is, the competitive model more severely un-

derestimates the valuation distribution when the colluders bid less aggressively

in the sense that the slope and level of their strategy function is lower.

I next establish that the changes in the slope and level of a colluder’s strategy

function cannot exactly offset everywhere. Relative to Figure 1, this argument

shows that the competitively rationalizing distribution (dashed line) must move

relative to the true valuation distribution (dotted line) in response to variation

in the instrument. Because IA.2 states that the dotted line is constant with

respect to the instrument, the dashed lines cannot coincide for all values of Z.
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More precisely, I argue that there exists a valuation, v, and realizations

of the instrument, z and z′, such that the horizontal difference between the

distribution functions is unequal at v, i.e.

F−1
i (Fi(v))− F̂−1

i (Fi(v) |Zi = z) ̸= F−1
i (F (v))− F̂i(Fi(v) |Zi = z′) ,

which implies that F̂i(· |Zi = z) ̸= F̂i(· |Zi = z′). The existence of such a v

is easy to verify near the minimum bid. To that end, I consider the following

cases.

Case i. The instrument does not affect the minimum serious bid. By IA.1,

bidder i’s strategy function is a nontrivial function of its instrument. And by

Proposition 1, σi(
¯
b; z) =

¯
b for all z. Therefore, there is a “first” point, v0,

where strategies σi(· ; z) and σi(· ; z′) diverge.30 Then there is a point v1 in the

neighborhood of v0 such that the slope and level of one of the strategies is greater

than the other, e.g. the equilibrium strategy when Zi = z′ is more agressive at

v1 than when Zi = z. Therefore, F̂−1
i (Fi(v1)|Zi = z′) < F̂−1

i (Fi(v1)|Zi = z).

Case ii. The instrument affects the minimum serious bid. Let
¯
b and

¯
b′

denote the minimum bids for Z = z and z′. Assume without loss of generality

that
¯
b <

¯
b′. Then F̂i(

¯
b′|Zi = z) > Fi(

¯
b′) because the competitive model strictly

underestimates (in the FOSD-sense) the true valuation distribution, except at

the minimum bid, where F̂i(
¯
b′|Zi = z′) = Fi(

¯
b′) whenever i’s strategy is strictly

increasing at
¯
b′. This implies that F̂i(

¯
b′|Zi = z′) < F̂i(

¯
b′|Zi = z).

If i’s strategy is not strictly increasing at v =
¯
b′, then Proposition 1 implies

that i will submit a bid exactly equal to
¯
b′ with positive probability. If i is not

colluding, then part (i) of Proposition 1 implies that bidder i must be the only

bidder with an atom in its bid distribution. In contrast, if i is colluding then all

ring members will optimally use the same strategy function, and multiple bid-

ders’ bid distributions will have an atom at
¯
b′. In this case, the the competitive

IPV model cannot reationalize the observed bid distributions and the colluders

would be identified even without exploiting variation in the level of competition

at the auction.

proof of Theorem 2. By part (i) of the lemma, the marginal distribution of bid-

der i’s serious bidding strategy, σi, is identified for each i. By part (ii) of the

lemma, bidder i’s competitively rationalizing distribution will be equal to its

true distribution for any value of Z. The competitively rationalizing valuations

30More precisely, let v0 denote the infimum of the set of v on which σi(· ; z)− σi(· ; z′) = 0.
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are therefore independent of the instrument. To establish identification of the

collusive model, I prove that the converse statement is also true: a colluder’s

competitively rationalizing valuation distribution must depend on Z. Thus, a

test for independence between the competitively rationalizing valuations and

the instrument can be used to detect collusion. Once all of the colluders have

been identified in this way, each of the bidders’ true competing distributions can

be computed as
∏

j ̸=i Sj for i ̸∈ R and
∏

j ̸∈R Sj for i ∈ R. The true valuation

distributions are then given by (15).

proof of Lemma 3. The equililbrium bid distributions solve the initial value

problem in equation 16. By standard arguments for differential equations, the

solution at b > r is continuously differentiable in the parameters (r, z) by SA.1.

Moreover, as noted by Guerre et al. (2000), the bid densities must have one more

derivative than the valuation densities. In the differential system of equations,

this is apparent from the fact that the bid densities appear on one side of the

equation while the quantiles of the valuations are on the other. The expected

payment function, ei(p; r, z,N ) = pG−1
i (p|r, z,N ), inherits its smoothness from

the competing quantile function G−1
i . Unlike the bid density which is zero be-

low the reserve price and unbounded above the reserve price, the slope of ei

is equal to the reserve price r at p = Gi(r|r, z,N ). The expected payment

function is technically undefined at p < Gi(r|r, z,N ) because there is no bid

that a bidder could submit and expect to win with probability p < Gi(r|r, z) in
equilibrium. However, one can continuosly extend ei and its first derivative by

defining ei(p; r, z,N ) = pr for 0 ≤ p < Gi(r). Finally, the slope of e is bounded

because it is equal to the bidder’s valuation, which are assumed to be bounded

under MA.2.

Proposition 2. Under MA.1–MA.5 and SA.1–SA.2, the conditional density of

the transformed serious bids B̃ =
√
B − r is bounded on [r, b̄] given z and r for

all but at most one bidder.

Proof. Fix z and r and suppress the dependence of the equilibrium bid distribu-

tions on these covariates. For simplicity, assume all n bidders in N are serious

bidders. To prove the more general statement, one would repeat the argument

below after replacing N with the set of serious bidders and replace the serious

cartel bidders’ valuation distribution with its valuation distribution conditional

on being the designated serious cartel bidder.
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The system of differential equations that characterizes the transformed marginal

equilibrium serious bid distributions is given in equation (18). Summing (18)

accross i and dividing by n− 1

∑
j

∂S̃j(b̃)

∂b̃
=

1

n− 1

∑
j

2b̃

F−1
j (S̃j(b̃))− b̃2 − r

and

∂ log S̃i(b̃)

∂b̃
=

1

n− 1

∑
j ̸=i

2b̃

F−1
j (Sj(b̃))− b̃2 − r

− n− 2

n− 1

2b̃

F−1
i (Sj(b̃))− b̃2 − r

,

(16)

for all i. Dividing the first equation by (18) by the first equation above yields

∂S̃i(b̃)

∂b̃∑
j ̸=i

∂S̃j(b̃)

∂b̃

=
1

n− 1

∑
j ̸=i

F−1
i (S̃i(b̃))− b̃2 − r

F−1
j (S̃j(b̃))− b̃2 − r

− n− 2

n− 1
, (17)

for all i.

Suppose that there exists a bidder i for whom ∂ log S̃i(b̃)

∂b̃
is unbounded as b̃

tends toward zero. Then the right side of equation (18) diverges for all j ̸= i,

hence b̃/(F−1
j (S̃j(b̃)) − b̃2 − r) diverges as b̃ approaches zero. Note that there

can be at most one bidder for i for whom ∂ log S̃i(b̃)

∂b̃
is unbounded, because the

left side of equation (17) cannot be unbounded for two different bidders.

As an example of an equilibrium in which one bidder’s bid density diverges

at a strictly faster rate, consider the special case of two bidders with uniformly

distributed valuations. Using the analytical solutions to the equilibrium derived

in Kaplan and Zamir (2012), the slope of the inverse bid function is found to be

proportional to (b− r)θi−1 where θi =
r−

¯
vi

2r−
¯
v1−

¯
v2
. If

¯
v1 =

¯
v2, then θ1 = θ2 = 1/2,

and both bidder’s bid densities diverge at a rate of 1/
√
b− r. If

¯
v1 >

¯
v2, then

θ1 = 1− θ2 > 1/2, and bidder 1’s bid density diverges at a faster rate.

proof of Theorem 3. Because the bids are bounded and absolutely continuous

under the smoothness conditions assumed in order to prove existence of the equi-

librium, the conditional process
(

T
log T

)2/(4+d)

(MT (·| z, r,N )−MT (·| z, r,N ))

and the cumulative incidence processes converge to centered Gaussian processes

as a consequence of Theorem 1 in Stute (1986) and the remarks that follow

on page 892. Stute (1986) also shows that the processes converge uniformly

in the conditioning variables under the additional smoothness condition on the
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functions Mi(b |·). The cumulative distribution functions are not differentiable

at bids equal to the reserve price, so the uniform convergence holds on compact

intervals that do not include the reserve price.

The mapping (Mi,M) 7→ exp{−
∫ b̄

·
1
M dMi} is Hadamard differentiable by

Lemma 20.10 in van der Vaart (1998) whenever M is bounded away from zero,

as will be the case for all b ≥ r if the reserve price r is binding.

If one uses the estimator ṽit,∅ under the assumption that all bid densities

diverge at the same rate at the lower extremity of their support, a boundary-

corrected kernel estimator similar to Karunamuni and Zhang (2008) reduces

the order of the bias to O(h2m) over the entire support. The densities of the

cumulative incidence functions, miT for each i, then converge uniformly at the

rate (T/ log)2/(5+d) and pointwise to Gaussian limit by standard arguments for

kernel density estimation. Because the density of the valuations is bounded

away from zero and the inverse strategy function is assumed to be strictly in-

creasing, the bid densities are also be bounded away from zero. The estimated

inverse strategy function defined by the bidder’s first-order condition therefore

converges pointwise to a Gaussian limit and uniformly by the continuous map-

ping theorem applied (m−iT ,MT ) with the mapping (m−i,M) 7→
¯
1 +M/m−i,

where
¯
1(b) = b is the identity function. Let σ−1

iT and σ−1
i denote this estimator

and its limit in probability, respectively.

If one uses the estimator based on the expected payment function, Pinkse and

Schurter (2022) prove as an intermediate step toward establishing the limiting

behavior of their monotonized and smoothed estimator of the derviative of the

expected payment function that smoothed, non-monotonized estimators such

as the one in equation 10 are asymptotically equivalent. Because e′′(p; r, z,N )

is bounded when the reserve price binds (Pinkse and Schurter, 2022), and GiT

converges to Gi at a faster rate than the estimator for the slope of the expected

payment function, the pointwise and uniform rates of convergence of the slope

of the expected payment function are the same as those of the inverse bidding

strategy.

In either case, because the inverse strategy function converges at a slower

rate than SiT , the dominant term in the asymptotic expansion of FiT (v)−Fi(v)

is Si(σiT (v)) − Si(σi(v)). An application of the delta method then implies

FiT (v)− Fi(v) is equal to si(σv)(σiT (v)− σi(v)) plus terms that converge at a

faster rate, which yields the promised result since the serious bid density si is

bounded on compact intervals that do not include the reserve price.
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Proposition 3. Under SA.1 and SA.2, the conditional Kendall’s τ parameter

is zero under the null hypothesis and its estimator is asymptotically normal

and asymptotically linear if psuedo-valuations are estimated with second-order

kernels and the kernel bandwidths are o(T−1/4).

Proof. The censored version of the conditional Kendall’s τ is equal the fraction

of orderable pairs that are concordant minus the fraction that are discordant.

A pair {(vi1, r1), (vi2, r2)} is orderable if max{vi1, vi2} > min{r1, r2}. Under

the null hypothesis that vit and rt are independent and (vit, rt) is IID across

auctions, the probability that max{vi1, vi2} = v1 or v2 is the same conditional

on the event that at least one of them is greater than min{r1, r2}. Thus, an

orderable pair is equally likely to be concordant as it is to be discordant, and

the conditional Kendall’s τ is zero.

Suppressing conditioning on any exogenous covariates, the population pa-

rameter can be written as

τCi =
2
∫
F−
i (v, r)1{r < v} dFi(v, r)∫

F−
i (v, v)1{r < v} dFi(v, r)

− 1

where Fi and F−
i denote the right- and left-continuous versions of the joint

distribution of (Vi,∅ ∨ r, r). The test statistic is numerically equivalent to the

sample analog of the above equation in which the joint distribution is replaced

by the joint empirical distribution of {(σ−1
iT (bit), rt)}t=1,...,T . The numerator in

the first term on the right is equal to the proportion of concordant, orderable

pairs, while the denominator is equal to the proportion of orderable pairs.

The influence function of the conditional Kendall’s tau estimator is

ψFi
(v, r) =

2PFi
{(vit − v)(rt − r) > 0,max{rt, r} < max{vit, v}} − (τCi + 1)PFi

{max{rt, r} < max{vit, v}}∫
F−
i (v, v)1{r < v} dFi(v, r)

.

In words, the influence function evaluated at (v, r) is the twice the proba-

bility under Fi that the pair of observations {(vit, rt), (v, r)} is concordant and

orderable minus (τ + 1) times the probabilitiy the pair is orderable, divided by

the probability that a random pair of independent observations drawn from Fi

is orderable.31 The numerator in the above expression for the influence function

has a mean of zero and is bounded between two and negative two. The denomi-

nator is bounded away from zero because there is a strictly positive probability

31For comparison, the usual unconditional Kendall’s τ statistic has an influence function
given by 4PFi

{(vit − v)(rt − r)} − 2τi − 2.
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that two randomly selected observations are orderable, i.e. that the maximum of

the two reserve prices is less than the maximum of the valuations. If valuations

were observed, the central limit theorem would then imply asymptotic normal-

ity of
√
T
∫
ψFi(v, r) dFiT (v, r). Hence, the estimator for τCi is asymptotically

linear as long as the remainder is negligible:

τ̂Ci −τCi −
∫
ψFi(v, r) dFiT (v, r) =

2(∫
F−
i (v, v)1{r < v} dFi(v, r)

)2 ∫
F−
iT (v, v)1{r < v} dFi(v, r)

·[∫
F−
i (v, r)1{r < v} dFi(v, r)

(∫
F−
iT (v, v)1{r < v} dFiT (v, r)−

∫
F−(v, v)1{r < v} dFi(v, r)

)2

−
∫
F−
i (v, v)1{r < v} dFi(v, r)

(∫
F−
iT (v, v)1{r < v} dFiT (v, r)−

∫
F−(v, v)1{r < v} dFi(v, r)

)
·(∫

F−
iT (v, r)1{r < v} dFiT (v, r)−

∫
F−(v, r)1{r < v} dFi(v, r)

)]
.

Indeed, if the valuations were observed, the remainder is Op(1/T ) because∫
F−
iT (v, r)1{r < v} dFiT (v, r) and

∫
F−
iT (v, v)1{r < v} dFiT (v, r) converge at the

1/
√
T -rate.

Because the valuations are not observed, the bias in the kernel-based es-

timates of the pseudo-valuations must be o(1/
√
T ) so that the bias in these

functionals is also o(1/
√
T ). In addition, 1√

T

∑
t ψFi(σ

−1
iT (bit; rt), rt) is asymp-

totically normal because

1√
T

∑
t

ψFi
(σ−1

iT (bit; rt), rt) ≈
1√
T

∑
t

ψFi
(σ−1

i (bit; rt), rt)+

1√
T

∑
t

∂ψFi(σ
−1
i (bit; rt), rt)

∂v

(
σ−1
iT (bit; rt)− σ−1

i (bit; rt)
)
.

The first term is the dominant term in the asymptotically linear expansion

when the valuations are observed. The second term is a linear combination

of pseudo-valuations. Because the pseudo-valuations have an asymptotically

linear representation, one can derive an influence function for the estimator for

τCi based on the undersmoothed pseudo-valuations. If one uses the estimator for

the pseudo-valuations based on the expected payment function, the Hadamard

derivative of the mapping from (M−i,M) to ei is a mapping from a pair of
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functions (h−i, h) to a function given by the expression

p2

gi(G
−1
i (p))

(∫ b̄

G−1
i (p)

dh−i

M
−
∫ b̄

G−1
i (p)

h

M2
dM−i

)

for p between Gi(r) and one. Letting (h−i, h) = (M−iT −M−i,MT −M), the

linear combination of the pseudo-valuations that rationalize all of bidder i’s bids

is therefore given by

∑
t

1

h2

∫
∂ψFi

(σ−1
i (bit; rt), rt)

∂v
(eiT (p; rt)−ei(p; rt))K ′

(
GiT (bit|rt)− p

h

)
dp+O(h2)

≈ 1

T

∑
t

∑
s

∂ψFi
(σ−1

i (bit; rt), rt)

∂v

∫
p2

gi(G
−1
i (p|rt))

1

h2
K ′
(
GiT (bit|rt)− p

h

)
(
1{bis < maxj ̸=i bjs}1

{
G−1

i (p|rt) ≤ bis
}
ws

M(bis|rt)
∑

l wl
−
∫ b̄

G−1
i (p|rt)

1{maxj ̸=i bjs ≤ x}1{bis ≤ x}ws

M(x|rt)2
∑

l wl
dM−i(x|rt)

)
dp

where the O(h2) term in the first expression is the bias introduced by the kernel

smoothing and ws is the kernel-based weight used to smooth over the reserve

prices.32 The above expression is asymptotically linear because it is a double

sum over a product of functions of the observations (bit, rt). The influence

function involves many terms but is otherwise routine to derive under the null

hypothesis because bit and bjt for i ̸= j are independent conditional on rt.

If the estimator based on the competing density is used, a similar expression

is obtained. In either case, the estimators which are asymptotically linear and

converge at a
√
T -rate to a Gaussian limiting distribution with a mean of zero

when the kernel bandwidth is o(T−1/4).

By an analogous argument, the truncated version of the conditional Kendall’s

τ is asymptotically linear and normally distributed about zero under the null

hypothesis. The test statistic is

τ̂Trunci =
2
∑

t

∑
s 1{vs < vt}1{rs < rt}1{rt < vs}∑

t

∑
s 1{rs < rt}1{rt < vs}1{rt < vt}

− 1

=
2
∑

t

∑
s 1{vs < vt}1{rs < rt}1{rt < vt} − 1{vs < vt}1{rs < rt}1{rt < vt}1{vs ≤ rt}∑

t

∑
s 1{rs < rt}1{rt < vt} − 1{rs < rt}1{rt < vt}1{vs ≤ rt}

− 1

32Note that the kernel K must be a boundary kernel or the definition of eiT and ei and
their derivatives need to be smoothly extended beyond the unit interval in order to reduce the
bias from O(h) to O(h2). If one uses a boundary kernel, the kernel is more properly written
as a two-argument function K(u, p0), where p0 is the point at which the slope of the expected
payment function is being estimated. The derivative K′ should then be interpreted as the
total derivative of K((p0 − p)/h, p0) with respect to p0.
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Because there are no atoms in the valuation distribution, we can ignore the

distinction between 1{vs ≤ rt} and 1{vs < rt}, and the population parameter

is now given by

τTrunci =
2
∫
(F−

i (v, r)− F−
i (r, r))1{v > r} dFi(v, r)∫

(F−
i (∞, r)− F−

i (r, r))1{v > r} dFi(v, r)
− 1 .

The rest of the proof repeats the same steps as above.

B Simulation Results

To assess the finite sample performance of the proposed test for collusion, I

simulate auctions in which two colluders compete against a single non-ring bid-

der. In order to simulate samples in which the reserve price is continuously

distributed, I must solve for the equilibrium bidding functions at each of many

different reserve prices. Because numerically solving for these functions can be

computationally expensive, I restrict attention to a special case in which the

equilibrium has an analytic solution. In particular, I simulate auctions in which

the non-ring bidder’s valuation is uniformly distributed on [0, 1], and the maxi-

mum of the ring’s valuations is uniformly distributed on [0, 1.8]. For simplicity, I

choose to make the ring members symmetric, i.e. their valuations are distributed

according to v1/2 on [0, 1]. The reserve price for each auction is independently

drawn uniformly at random from [0.1, 0.5] and all bidders use their optimal

serious bidding strategy. Under this simulation design, each bidder loses with

approximately equal probability, so that the number of observations used to

estimate each bidder’s competing distribution is roughly the same.

In the simulation results reported in Table 4, I use a bandwidth sequences,

h ∝ T−1/3.9, to calculate τ̂Ci .33 I then draw T auctions with replacement and

calculate the bootstrapped test statistic τC∗
i many times to estimate an equal-

tailed confidence interval for
√
T
(
τ̂C∗
i − τ̂Ci

)
. I then reject the null hypothesis at

the α level of significance if
√
T τ̂Ci is outside the estimated confidence interval.

The fraction of tests for which the null hypothesis is rejected for the non-ring

and ring bidders are reported in the size and power columns of Table 4.

Previously studied collusion detection methods are either invalid or have

power equal to size under this model. As a benchmark, albeit an infeasible one,

33The bandwidth used to smooth over reserve prices is 2σrT−1/3.9 where σr is the standard

deviation of the reserve prices. I use a bandwidth of 1.5T
−1/3.9
i where Ti is the number of

auctions in which bidder i lost.
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I also test the null using the bidders’ true competitively rationalizing valuations.

For the competitive bidder, the true competitively rationalizing valuations are

simply equal to the bidder’s valuation. For a collusive bidder, I compute the

valuation that would rationalize each of its bids as a best response to the true

distribution of the other bidders’ bids in the collusive equilibrium. This “oracle”

test statistic is a U-statistic, which means it is
√
T -consistent, asymptotically

normal, and unbiased with a relatively simple analytical expression for the vari-

ance that is routine to estimate. As expected, the bootstrap procedure and

the Guassian approximation to the oracle statistic both produce critical values

that control the size of the test. The discrepancy in the power of the tests

indicates the loss in power due to the fact the inverse strategy functions are

nonparametrically estimated in a first stage.

Table 4: Results are based on 1,000 simulations. Critical values for the nonpara-
metric test are estimated from 1,500 bootstrap samples. The size and power of
the test are reported in the last four columns. The nominal size of each test is
10%.

Bootstrap Oracle
Auctions, T Size Power Size Power

200 0.092 0.094 0.070 0.137
500 0.084 0.198 0.072 0.241
1000 0.085 0.327 0.084 0.414

C Homogenizing the Bids and Reserve Prices

I assume auction-level heterogeneity enters bidders’ payoffs additively separably

through a linear combination of the observable characteristics:

uit = β′xt + vit ,

where uit is bidder i’s payoff from winning auction t and vit is the unobservable

idiosyncratic component of i’s payoff. If vit is independent of xt, then the

following regression equation will hold:

b̃it = β′xt + η(r̃t − β′xt,Nt) + ϵit ,
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where

ϵit = vit − η(r̃t − β′xt,Nt)−
Gi

gi
(vit|r̃t − β′xt,Nt)

is an independent, mean-zero error term with variance σ2(r̃t − β′xt,Nt) and

η is an unknown function of the screening level—the threshold below which

idiosyncratic valuations will be censored by the reserve price—and the set of

participants in the same market as i. If the reserve price were never binding, then

none of the bids would be censored and the above equation could be estimated

via OLS with fixed effects for Nt. On the other hand, if the reserve price binds,

bidder i’s competing distribution in auction t will be correlated with xt to the

extent that xt is correlated with the screening level. The OLS estimates will

therefore suffer from an omitted variable bias.

To account for the fact that the reserve price is often binding in SBFEP auc-

tions, I use a modified version of the typical partially linear single-index model

(PLSIM) (see, for example, Liang et al., 2010). The estimator, β̂, minimizes the

sum of squared residuals in a local linear regression of p̃t − β′xt on the scalar

index r̃t − β′xt, where p̃t is the observed price at auction t. Typically, however,

the covariates that enter linearly are not constrained to be the same as those

that enter nonlinearly through η. Additionally, because PLSIMs generally do

not allow the function η to depend on a categorical variable, I estimate a sepa-

rate local linear regression for each market, while constraining β̂ to be constant

across markets. Thus, my estimator is the same as in Liang et al. (2010), except

I impose the obvious equality constraints across markets and on the coefficients

in the linear and nonlinear components of the regression. Consequently, the

restricted estimator for β inherits the nice asymptotic properties of the unre-

stricted estimator. In particular,
√
T
(
β̂ − β

)
converges to a centered Gaussian

distribution.

For the local linear regression estimator of η, I use a quartic kernel to ensure

differentiability of the least-squares objective function. To improve the perfor-

mance in sparse regions on the data, I also include ridge regression parameters,

λN > 0, for each market. Both the kernel bandwidths and the ridge regression

parameters were selected to minimize the leave-one-out cross-validated mean

integrated squared error at β = β̂,

∑
t

(p̃t − β′xt − η̂−t(r̃t − β′xt,Nt))
2

∣∣∣∣
β=β̂

where η̂−t is the local linear ridge regression estimator computed from all auc-
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tions excluding auction t.

Descriptions and summary statistics for the variables are in Tables 5 and 6.

Estimates for β are reported in Table 7. For comparison, the first column reports

the OLS estimates from a regression that includes market fixed effects for ten of

the eleven clusters defined in the next section. These estimates will be biased to

the extent that the reserve price is binding. The PLSIM includes the covariates

that the Ministry of Forests in its original hedonic pricing formula, as well as the

estimated fractions of cedar and white pine volume, which were added to the

model when the Ministry amended the pricing formula in 2001, immediately

after the auctions in my data had been held. Originally, the Ministry used

a binary variable to indicate whether 60% or more of the estimated volume

came from a combination of hemlock or balsam trees, but later replaced this

with a binary indicator for whether the estimated combined volume of hemlock,

balsam, and cedar was greater than 50% of the total estimated volume. I opt

to include these as separate continuous variables. The fitted values from the

PLSIM differ substantially from the Ministry’s own appraisal. Under the non-

hedonic appraisal regime, the linear correlation between the Ministry’s estimate

of the license value and mine is only 0.6. Using the hedonic pricing formula, the

correlation increases to 0.806.

Figure 2 plots the winning bonus bid against the estimated appraisal price

from Model 3 minus the reserve price, β̂′xt − r̃t.
34 As β̂′xt − r̃t increases, the

screening level decreases and bidders are more likely to participate with a wider

range of valuations. Consequently, the variance in the winning bonus bid in-

creases. In contrast, at low values of β̂′xt − r̃t, the bonus bids are predictably

smaller and have noticeably smaller variance. Thus, the general upward trend

and increasing variance in Figure 2 suggests that the estimated appraisal price

accurately summarizes variation in the covariates that is relevant to bidders’

valuations.35 In addition, the wide range in the observed screening levels indi-

cates that there is substantial variation with which it will be possible to test for

collusion.36

34Any constant term in the hedonic pricing formula is not identified separately from the
level of η. To make Figure 2, I normalize the level of the appraisal so that the overall mean
of β̂′xt − r̃t is equal to the mean winning bonus bid.

35In contrast, before 1999, there is a negative rank correlation between the screening level
implied by the Ministry’s estimate of the value of the license and the winning bonus bid. After
the Ministry adopted the hedonic formula the rank correlation was moderately positive, but
not as strong as in Figure 2.

36To verify that the estimated screening level affects the bidder’s participation decisions, I
regress the number of participants on the estimated screening level and indicator variables for
each district. On average, a one-standard-deviation increase in the estimated screening level is
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Table 5: Variable descriptions.

Statistic Description

Reserve Reserve price ($/m3)
Price Sale price, i.e. the winning bonus bid plus the reserve price ($/m3)
# Bids Number of bids submitted
Volume Estimated volume of merchantable timber (1,000 m3)
Vol. per Week Minimum rate of extraction to complete before license expires
Vol. per Tree Volume per tree
Vol. per Hect. Volume per hectare
Price Index British Columbia’s consumer price index
Lumber Price Index Value of timbers, estimated by multiplying volume by species-specific lumber

recovery factors and British Columbia’s lumber price indices
Quality Index Index computed as the ratio of the estimated volume of recoverable lumber to

a fixed benchmark defined by the Ministry of Forest’s
Cycle Time Amount of time from the site to the nearest point of appraisal (hours)
Avg. Slope Average slope of land in the tract
Horse Percent of volume to be extracted by horse
Cable Percent of volume to be extracted by cable yarding
Helicopter Percent of volume to be extracted by helicopter
Blowndown Percent of volume that has been blown down
Burned Percent of volume that has been burned
Useless Percent of volume that is dead or useless
Dev. Costs Anticipated development costs to be paid by licensee ($/1, 000m3)
Hemlock Estimated percent of volume from hemlock trees
Balsam Estimated percent of volume from balsam trees
Cedar Estimated percent of volume from cedar trees
White Pine Estimated percent of volume from white pine trees

60



Table 6: Summary statistics for Category 1 Auctions.

Statistic Min Pctl(25) Median Pctl(75) Max Mean

Reserve 0.250 23.175 33.750 43.090 86.540 33.192
Price 0.570 34.775 47.500 59.840 105.000 47.354
# Bids 1 2 4 6 19 4.315
Volume 1.000 3.727 6.407 10.993 61.496 8.341
Vol. per Week 0.005 0.060 0.121 0.239 29.861 0.284
Vol. per Tree 0.080 0.340 0.500 0.620 5.010 0.534
Vol. per Hect. 0.004 0.179 0.264 0.335 3.027 0.263
Lumber Price Index 38.141 102.671 115.283 127.407 173.494 115.636
Quality Index 0.538 1.164 1.240 1.310 1.544 1.241
Cycle Time 0.000 2.700 3.500 4.600 16.400 3.865
Slope 0 7 14 23 86 16.257
Horse 0 0 0 0 1 0.090
Cable 0 0 0 0 1 0.082
Helicopter 0 0 0 0 1 0.030
Blowdown 0 0 0 0 1 0.020
Burned 0 0 0 0 1 0.012
Useless 0.000 0.000 0.020 0.080 0.450 0.052
Dev. Costs 0.000 0.000 0.679 1.900 32.311 1.539
Hemlock 0 0 0 0.001 1 0.093
Balsam 0 0 0.01 0.1 1 0.121
Cedar 0 0 0 0 1 0.032
White Pine 0 0 0 0 0 0.003

T = 1507
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Table 7: Estimates from an ordinary least-squares and the partially linear single-
index model for bids in Category 1 auctions. The OLS regression includes fixed
effects for each of ten markets defined using a hierarchical clustering algorithm.

OLS PLSIM

Volume 0.194∗∗∗ 0.619∗∗∗

(0.052) (0.026)
Vol. per Tree 7.803∗∗∗ 13.388∗∗∗

(1.295) (0.841)
Vol. per Hect. 21.426∗∗∗ 14.407∗∗∗

(2.591) (2.095)
Lumber Price Index 0.217∗∗∗ 0.177∗∗∗

(0.020) (0.011)
Quality Index 20.778∗∗∗ 20.990∗∗∗

(5.176) (1.184)
Cycle Time −2.446∗∗∗ −4.350∗∗∗

(0.204) (0.087)
Slope −0.153∗∗∗ 0.169∗∗∗

(0.040) (0.036)
Horse −16.128∗∗∗ −20.692∗∗∗

(1.276) (0.580)
Cable −8.008∗∗∗ −13.350∗∗∗

(1.673) (1.792)
Helicopter −47.354∗∗∗ −64.830∗∗∗

(2.029) (0.870)
Blowdown −9.410∗∗∗ −2.260

(2.688) (1.380)
Burned −21.566∗∗∗ −0.114

(2.956) (1.947)
Useless 7.802 −4.109

(5.649) (4.211)
Dev. Costs −0.721∗∗∗ −0.626∗∗∗

(0.121) (0.152)
Hemlock −13.759∗∗∗ −17.304∗∗∗

(2.211) (1.444)
Balsam −13.968∗∗∗ −22.300∗∗∗

(1.766) (0.973)
Cedar −3.667 21.925∗∗∗

(3.858) (4.073)
White Pine 36.510∗∗ 11.041

(14.558) (10.131)

Observations 1,507 1,507

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 2: Homogenized prices as a function of the homogenized reserve prices.
The winning bonus bid is positively correlated with the estimated value of the
timber tract. In addition, the variance in the winning bonus bid is greater when
the license is more valuable relative to the reserve price because bidders are
more likely to enter with a wider range of private valuations.

D Conditioning on the Set of Potential Bidders

As a prerequisite to the estimation procedure used in this paper, I must condi-

tion on the sets of firms that each bidder i deems to be potential competitors.

In line with earlier work on SBFEP auctions (Paarsch, 1997), I assume that the

31 geographic districts defined by the Ministry of Forests constitute submarkets

in the sense that all bidders hold the same beliefs about the distribution of

potential entrants for any auction in a given district. The bidders’ equilibrium

strategies can then be estimated conditional on each district.

This assumption appears to be supported by the data. There are, however,

neighboring districts in which the same sets of bidders have similar participation

associated with a decrease of 0.81 in the number of bids submitted. Though measurement error
might attenuate the estimated coefficient on the screening level, the estimate was significantly
different from zero (p = 0.05). In addition, the point estimates of η(·,N ) were monotonically
increasing functions of the screening level. If the reserve prices did not bind, then η should
be constant within each market.
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rates. If bidders’ beliefs about Nt are in fact the same for auctions in these

districts, then they could be pooled in order to more precisely estimate the

competing distributions. But this raises two key questions. First, what is the

right notion of similarity between districts? And, second, how similar should

districts be to justify pooling them in the estimation?

Regarding the first question, I argue that two districts should be grouped

into the same market if the same bidders have similar rates of participation in

both districts, in which case the distribution over competitors is approximately

equal. Consequently, each bidder’s competing distribution will be similar in the

two districts, and it may be reasonable to pool these districts in the estimation.

I therefore measure the distance between districts l and k by
∑

i
|wil−wik|
wil+wik

, where

wil is the frequency of participation by bidder i in district l, and the sum is taken

over all bidders i for whom wil and wik are not both zero. 37

In answer to the second question of how similar is similar enough, I do not

take a definitive position. Instead, I use a hierarchical clustering algorithm

that produces a sequence of increasingly coarse market definitions. Initially,

the algorithm assigns each of the 31 districts to its own market (or cluster). In

the first step, the algorithm merges the two districts that are closest to each

other and computes a measure of dissimilarity among the 30 resulting markets.

It then iteratively merges the two most similar markets and recalculates the

dissimilarities until only two markets remain. If the measure of dissimilarity

between clusters is chosen appropriately, this algorithm produces a sequence of

nested partitions of the auctions.38 One can then perform the analysis using

any one these market definitions.

The market definition consisting of eleven submarkets appears reasonable

with the exception of the smallest. The lone district in this cluster is in a

remote area of northeast and was the location of only one Category 1 auction

during the period under study. I therefore omit this district from the empirical

analysis.

Other output from the hierarchical clustering algorithm is illustrated by the

37This metric can be viewed as a weighted L1-distance. I also experimented with other
metrics, such as the Euclidean distance, but found that they produced less reasonable results.
For example, the Euclidean distance might consider two districts to be very similar even
though the identities of the firms that constitute the competitive fringe do not overlap. This
underemphasis on matching based on the zeros in wl and wk then led the hierarchical clustering
algorithm to group noncontiguous districts. The above measure appears to be better suited
to the sparse participation patterns in the data.

38I use Ward’s method of defining dissimilarities between clusters, which is designed to
produce clusters that have minimal within-cluster variance.
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dendrogram in Figure 3. Each “leaf” of the dendrogram represents a district

as defined by the Ministry of Forests. The height at which two leaves join

represents the dissimilarity between the markets that were merged to form a

new market. The tree can be “cut” at different heights to produce the various

market definitions. For example, the dashed horizontal line in Figure 3 shows

the cut that partitions the districts into 11 markets.

At the bottom of the figure, I sum the number of Category 1 auctions in

each district between 1996 and 2000. I also sum the auctions in each of the

illustrated markets. This partition into 11 submarkets is the default market

definition in the empirical analysis, so these sums indicate the number of inde-

pendent observations available to estimate the bidders’ market-specific inverse

bidding strategies. The names of the districts are abbreviated as Cranbrook

(Cra), Kootenay Lake (Koo), Invermere (Inv), Quesnel (Que), Robson Val-

ley (Rob), Mackenzie (Mac), Fort Nelson (FNe), Dawson Creek (Daw), Fort

St. John (FJo), Prince George (PrG), Fort St. James (FJa), Vanderhoof (Van),

Burns Lake (Bur), Morice (Mor), Bulkley-Cassiar (BuC), Kispiox (Kis), Kalum

(Kal), Horsefly (Hor), Williams Lake (Wil), Chilcotin (Chi), Castlegar-Arrow

(CaA), Boundary (Bou), Columbia (Col), Salmon Arm (Sal), Vernon (Ver), Lil-

looet (Lil), Penticton (Pen), Merritt (Mer), Kamloops (Kam), Clearwater (Cle),

and 100 Mile House (MiH).

E Numerical Solution to Asymmetric First-Price

Auctions with Reserve Prices

The system of differential equations that characterizes the equilibrium is in-

determinate or unbounded near the minimum bid, depending on whether the

reserve price binds. Consequently, the “forward” methods of solving initial value

problems cannot be applied because there is no way to evaluate the system at

the left boundary. As an alternative, one could start with an initial guess of the

maximum bid and use backward shooting algorithms to find the inverse strate-

gies that satisfy the initial value conditions. However, Fibich and Gavish (2011)

show that these methods become increasingly unstable when there are many

different types of bidders. Instead, they advocate converting the initial value

problem into a boundary value problem by choosing a bidder, say bidder n, as

a benchmark and writing the equilibrium bids and the other bidders’ strategies

as a function of bidder n’s valuation. Fixed-point iterations can then be used
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to find a solution.

While this iterative method appears to work well in several interesting cases,

there is no theory to guarantee that the sequence of iterations will converge.

And, in practice, I find greater success by making two modification to their

solution strategy. First, rather than discretizing the solution and using finite

difference approximations, I seek an approximate solution in the space of cubic

splines. That is, I represent the solution as a linear combination of basis func-

tions and solve for the coefficients that minimize the residuals in the differential

equations.

Second, I solve the system (18) instead of the equivalent system of equations

that characterize the inverse bidding strategies:

2b̃

F−1
i (S̃i(b̃))− b̃2 − r

=
∑
j ̸=i

∂ log S̃i(b̃)

∂b̃
for all i , (18)

where b̃ =
√
b− r and S̃i is the distribution of B̃i. By choosing bidder n to

be the bidder whose bid density might diverge faster than (b − r)−1/2, this

change of variables ensures that the left-hand side of (18) has a finite limit

as b̃ approaches zero. By solving for the distribution of B̃i rather than the

inverse bidding strategies, evaulation of the system of equations only requires

knowledge of the quantile function for bidder i. Though this modification is

largely for convenience when Fi is known for all i, when applied using estimated

valuation distributions, a practical advantage of this formulation is that F−1
i

can be nonparametrically estimated at a faster rate than the density fi. For

the purposes of computing an analytic gradient, however, it is still useful to

evaluate the derivative of F−1
i . To that end, I use a monotonic cubic spline to

interpolate the estimated quantile function.

Thus, I approximate the solution to the boundary value problem

∂S̃i

∂S̃n

=
S̃i(w)

S̃n

∑
j

1
F−1

j (S̃j(S̃n))−w(S̃n)2−r
− N−1

F−1
i (S̃i(S̃n))−w(S̃n)2−r∑

j
1

F−1
j (S̃j(S̃n))−w(S̃n)2−r

− N−1
F−1

n (S̃n)−w(S̃n)2−r

∂w

∂S̃n

=
N − 1

2 · w(S̃n) · S̃n

1∑
j

1
F−1

j (S̃j(S̃n))−w(S̃n)2−r
− N−1

F−1
n (S̃n)−w(S̃n)2−r

S̃i(
¯
S̃n) = Fi(r) , S̃(1) = 1 , w(

¯
S̃n) = 0.

by finding the coefficients ail and a0l such that S̃i(S̃n) =
∑

l ailβl(S̃n) and
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w(S̃n) =
∑

l a0lβl(S̃n) minimize the error in the above system, where each

β = {βl : l = 1, . . . , L} is a basis of spline functions defined on the interval

[Fn(r), 1]. In order to impose the boundary conditions, the knot vector used

to construct the basis splines can be chosen to include ord copies of Fn(r) and

1, where ord is the order of the spline functions. The boundary conditions are

then satisfied whenever a01 = 0, ai1 = Fi(r), and aiL = 1. In addition, I impose

monotonicity in the solution by restricting ai· to be an increasing sequence for

each i = 0, . . . , n− 1.

To be precise, let a = (ail : i = 0, . . . , n−1, j = 1, . . . , L) and Ei(a, s;β) for

i = 0, . . . , n−1 denote the difference between the left- and right-hand sides of the

above equations evaluated at S̃n = s in some arbitrarily fine grid, s = s1, . . . , sd.

The approximation problem is then given by

min
a

∑
i

∥Ei(a, · ;β)∥ subject to

Fi(r) = ai1 < · · · < aiL = 1 for i = 1, . . . , n− 1

0 = a01 < · · · < a0L ,

where ∥ · ∥ is some norm on Rd. The Euclidean norm is an attractive option

because it is differentiable, but the approximate solution might perform badly

in a small region of the domain even when the average squared error is small.

This does not appear to be an issue in simple cases, but I have found that

the supnorm performs at least as well and is not vulnerable to this criticism.

To preserve differentiability, I follow Hickman et al. (2016) and formulate the

problem as

min
a,ϵ

ϵ subject to

Ei(a, s;β) < ϵ for i = 0, . . . , n− 1 and s = s1, . . . , sd

−Ei(a, s;β) < ϵ for i = 0, . . . , n− 1 and s = s1, . . . , sd

Fi(r) = ai1 < · · · < aiL = 1 for i = 1, . . . , n− 1

0 = a01 < · · · < a0L

Because the number of inequality constraints grows linearly with d, the grid

cannot be arbitrarily fine. In general, d should be at least as large as the

number of basis spline functions and could be much greater. In cases where

the analytic solution has been derived by Kaplan and Zamir (2012), I find that
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d = 50 already provides a good approximation with 12 cubic basis splines.

Figure 4 shows the approximate and the analytic equilibrium bid functions

for an auction with two bidders and a reserve price of 0.3. The first bidder’s

valuations are uniform on [0, 1] and the second benchmark bidder’s valuations

are uniform on [0.2, 0.8]. As depicted in Figure 4, the spline function provides a

uniformly good approximation to the equilibrium; the maximum approximation

error is 5.6× 10−3.

This figure also illustrates the difficulty in approximating the unbounded bid

density near the reserve price. If, for example, Chebyshev polynomials in the

bids were used to approximate the solution to the untransformed system, a high

degree polynomial would be required in order to simultaneously approximate

the steepness near the reserve price and the linearity near the maximum bid.

The basis splines that I selected avoid this issue by solving the system in terms

of the square-root of the bid minus the reserve price, as opposed to the bid,

itself. Basis splines are also more flexible because they are defined piecewise

on the partition of the domain created by the knot vector. Thus, in contrast

to globally defined polynomials, they can accommodate curvature in the bid

distribution functions in some regions of the domain without affecting the fit in

others.

Note that the above system of equations will not be valid if the upper ex-

tremity to the support of bidder n’s bids is less than the other bidders’. To avoid

this situation, the benchmark bidder n can be chosen to be the bidder with the

highest upper extremity to the support of its valuations. In this case, the differ-

ential equation for bidder i must be multiplied by an indicator for whether Si is

less than one. And, because the left-hand side of bidder i’s differential equation

might not approach zero as Si approaches one, the knot vector for the basis

spline functions should be chosen so as to allow for a discontinuous derivative

at each bidder’s maximum valuation.

Lastly, this solution method does not address the possibility that one of the

bidders’ strategy functions is constant near the reserve price. In this case the

lower boundary condition for one of the n bidders must be removed or replaced

with Si(r) = Fi

(
r + Gi

gi
(r)
)
. This does not sacrifice uniqueness of the solution

to the system of differential equations (Lebrun, 2006), but the above change of

variables may no longer be appropriate. Further research is needed to determine

a reliable solution method in this case.
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F Extensions

F.1 Affiliated Private Valuations

One could strengthen the case for collusion by extending the basic identifica-

tion strategy to more general auction models, such as models in which bidders’

private valuations are affiliated. With affiliated valuations, each competitive

bidder’s inverse strategy function is identified under the null hypothesis it is

not colluding if the two highest bids are observed (Athey and Haile, 2002).39

Consequently, a test of independence between the competitively rationalizing

valuations and an exogenous instrument would control the probability of mak-

ing a type I error.

In practice, estimating these inverse strategies demands more from the data

than under the independence assumption because the distribution of the high-

est competing bid must be estimated conditional on the bidder’s own bid. A

type-symmetry assumption would justify pooling bidders of the same type in

order to more precisely estimate their inverse strategy. But this assumption

sacrifices flexibility in the marginal distributions of bidders’ valuations. There-

fore, it may be necessary to choose between allowing for affiliation in valuations

and allowing for unobservable heterogeneity in bidders’ valuation distributions.

For example, in the above analysis, I argue that valuations are independently

distributed conditional on the observable covariates because the data include

all the variables that the Ministry of Forests itself uses to estimate the value of

the timber licenses. This assumption could be relaxed, however, if each bidder

were observed to win more frequently.

On the other hand, the cost of collusion is not generally identified when

bidders’ private valuations are affiliated. Even if identities of the colluders

were known, the possibility of phantom bidding entails that the distribution

of a colluder’s valuation could only be nonparametrically identified conditional

on the event that its valuation is the greatest among all ring members, which

would be insufficient to nonparametrically identify the equilibrium prices in a

competitive auction.

39Under the null hypothesis that bidder i is not colluding, the highest and second-highest
bids are both serious bids if one of them belongs to bidder i. Lemma 1 in Athey and Haile
(2002) then implies that the inverse strategies are identified.
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F.2 Unobservable Auction-Level Heterogeneity

In contrast, if at least two bids are observed in each auction, one could ac-

count for some correlation among the bids by using losing bids to estimate the

distribution of auction-level heterogeneity that bidders observe but the econo-

metrician does not. The difficulty in developing this extension is again that

some of the losing bids could be phantom bids and possibly unrelated to both

the bidders’ private valuations and the unobserved heterogeneity. As a result,

the procedure would have to simultaneously test for collusion and estimate this

latent distribution. More precisely, one might consider bidder i’s bid and the

highest bid among bidder i’s competitors as independent measures of the un-

observed heterogeneity. Under the null hypothesis that i is not colluding, the

deconvolution methods in Krasnokutskaya (2011) can then be used to estimate

the latent distribution and the distribution of each bidder’s winning bids. In

a multiple testing framework, one would generally have to re-estimate the un-

observed heterogeniety distribution under each null hypothesis. On the other

hand, if at least one bidder in each auction is known to be competitive a priori,

the winning bid and the other competitive bids can be used as the independent

measures of the unobserved heterogeneity. Identification of the colluders would

then proceed as in the baseline case.

In the application to British Columbia’s timber auctions, however, the re-

serve price is often binding, with the result that only one bid is observed for

many of the auctions. And, unlike the automobile auctions studied in Roberts

(2013), the reserve price is an explicit function of observable variables and does

reflect any heterogeneity the econometrician does not already observe.
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Figure 3: A dendrogram representing the output of a hierarchical clustering al-
gorithm. Initially, each district is assigned to its own cluster. The two most
similar districts, Williams Lake (Wil) and Chilcotin (Chi), are the first to be
merged. At each juncture, the height of the dendrogram represents the dissim-
ilarity between the two clusters that are merged.
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Figure 4: A spline approximation to equilibrium bid distributions. Twelve cubic
basis spline functions were used to construct an approximate solution to the
system of differential equations that defines the Bayes-Nash equilibrium for an
auction with two bidders and a reserve price of 0.3. The bidders’ valuations
are uniformly distributed on [0, 1] and [0.2, 0.8]. The splines are defined on a
transformed domain in order to minimize the number of basis functions needed
to approximate the equilibrium bid distributions near the reserve price.
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