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Abstract

We show that the main results in papers proposing commonly used and attractive boundary
correction methods are incorrect. Indeed, we show that the theorems are false and that the
problem can be addressed by assuming more smoothness and changing the recommendation of
how to choose a secondary input parameter.

1 Introduction

In a series of papers, Zhang et al. (1999, ZKJ), Karunamuni and Alberts (2005, KA), and Karunamuni
and Zhang (2008, KZ) propose some attractive boundary correction methods for nonparametric
kernel density estimators. These results have been used by a substantial number of authors. For
example, KZ has been adopted for the estimation of auction models in economics by Hickman and
Hubbard (2015), which has gained some popularity.
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Unfortunately, the main results in KA and KZ are false for reasons that we point out in this paper.
Indeed, no estimator can achieve the claimed results under the stated conditions. We focus in our
discussion on KZ, noting that a similar critique applies to KA.

The source of the problem lies in the fact that the KZ methodology requires an auxiliary estimate
of the derivative of the log density at the boundary point. This estimator does not converge at the
rate stated in the paper for reasons we explain in detail in section 2. The problem is that the variance
decreases at a slower rate than what is claimed.

We show that all is not lost, however: the procedure can be fixed. Doing so requires more
smoothness (one extra derivative at the boundary) and a different recommendation for the choice
of the bandwidth ℎ1 for the auxiliary estimate. Whereas KZ require the auxiliary bandwidth to
converge faster than the main bandwidth used in the paper, one should in fact make the auxiliary
bandwidth vanish at a slower rate.

The reason for this is simple: having an extra derivative makes the bias of the auxiliary estimate
vanish at the rate ℎ2

1 instead of ℎ1. This allows ℎ1 to converge more slowly yet the bias to decrease
faster than would be the case without the extra smoothness. Having ℎ1 converge more slowly also
speeds up convergence of the variance.

The fix carries over to papers that use the KZ methodology, including Hickman and Hubbard
(2015). There, also, one should assume an extra derivative and pick the auxiliary bandwidth to
converge more slowly than n−1∕5 but faster than n−1∕10, ideally at a rate n−1∕7.

We provide a detailed description of the problem in section 2 and propose a fix in section 3.

2 Problem

Given independent and identically distributed random variables X1,… , Xn with unknown density
f , KZ’s estimator is defined by
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where A > 1∕3 and the bandwidths (ℎ, ℎ1, ℎ0) are chosen by the researcher, K is a second–order
kernel, and K(0) is a boundary kernel. We quote the statement of their main result regarding the
asymptotic distribution of the above estimator.

Theorem (Theorem 2.1 in Karunamuni and Zhang (2008)). Let f̂n be defined by (2.8) with ℎ =

O(n−1∕5). Let ℎ1 = o(ℎ). Assume that f (x) > 0 for x = 0, ℎ, and that f (2) is continuous in a

neighborhood of 0. Then for x = cℎ, 0 ≤ c ≤ 1, we have1
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(KZ-2.10)

and
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The asserted contribution of KZ’s theorem 2.1 is that the remainder terms in (2.10) and (2.11)
are little o instead of big O as they were in earlier papers. This is purportedly achieved by choosing a
bandwidth ℎ1 for estimation of the derivative of the log density at the boundary for which ℎ1 = o(ℎ),
where ℎ ∼ n−1∕5 is the main bandwidth used in the paper with n the sample size.

The density function f is assumed to be twice differentiable, so its derivative f ′ is once differ-
entiable. The optimal nonparametric convergence rate for estimates of (log f )′ is the same as that
of estimates of f ′, namely 5

√

n (see e.g. Stone, 1982). This is true since the bias is O(ℎ1) and the
variance O(1∕nℎ3

1), such that the root mean square error is O(n−1∕5) if ℎ1 ∼ n−1∕5. Undersmoothing,
1There is likely a typo in the second integral in 2.11 in KZ. Based on ZKJ, we state what we believe to be the

intended formula. This discrepancy is immaterial for the point that we make here.



i.e. choosing ℎ1 = o(n−1∕5), removes the asymptotic bias, but makes the variance vanish more slowly:
the convergence rate is worse.

Figure 1: Lemma statements in Karunamuni and Zhang (2008)

We thus agree with (2.10), but (2.11) is false. Indeed, the term that is claimed to be o{(nℎ)−1}

in (2.11) would dominate the first right hand side term in (2.11) if ℎ1 = o(n−1∕5). To see that this is
true, consider lemmas A.2 and A.3 in figure 1, both of which claim a convergence rate faster than
the optimal one (if ℎ1 = o(n−1∕5)) and both of which are false.

Indeed, consider lemma A.2. Its proof is claimed to follow from lemma A.1 of Zhang et al.
(1999, ZKJ), which is depicted in figure 2. Lemma A.3 in KZ refers to lemma A.2 of ZKJ, which
also depends on lemma A.1 in ZKJ.

The source of the problems in KZ and KA is equation (A.8) in ZKJ, which says that

Ī1 = O
( 1
n2ℎ2

)

= O(ℎ8), for ℎ = O(n−1∕5). (ZKJ-A.8)

The first equality is unobjectionable. The second equality, however, holds only if ℎ vanishes no

faster than n−1∕5.2 If ℎ converges faster than n−1∕5 then the second equality does not hold. If ℎ in
ZKJ vanishes at a rate faster than n−1∕5 then the rate in lemma A.1 of ZKJ is O(ℎ8 + 1∕n2ℎ2), but
not O(ℎ8).

The consequence for KZ is that the convergence rates in lemmas A.2 and A.3 are O(ℎ6
1 +

1∕n3∕2ℎ3∕2
1 ) and O(ℎ3

1 + 1∕n3∕2ℎ9∕2
1 ) respectively instead of O(ℎ6

1) and O(ℎ3
1), which are the rates

2In ZKJ it is assumed that ℎ ∼ n−1∕5 so there the equality holds.



Figure 2: Lemma in Zhang et al. (1999)

asserted in KZ. If ℎ1 ∼ n−1∕5 then lemmas A.2 and A.3 in KZ would be correct, but that rate would
not be sufficient to bound I5 in the proof of KZ’s theorem, see figure 3. Indeed, the bound obtained
in (A.12) in KZ would be O(ℎ6∕nℎ3

1) such that I5 = O(ℎ2∕nℎ3
1) ≠ O(1∕nℎ).

3 Fix

A simple way of fixing the problem is to assume f possesses one more derivative at the boundary
and to let ℎ1 vanish at a rate slower than n−1∕5, not faster (which is the recommendation in KZ). All
numerical examples considered in KZ are thrice differentiable, hence they possess the additional
derivative.

If f is indeed thrice differentiable at the boundary then f ′ is twice differentiable, which implies



that the bias is O(ℎ2
1) and the variance O(1∕nℎ3

1), producing a root mean square error that is o(n−1∕5)
if nℎ5

1 → ∞ and nℎ10
1 → 0 as n → ∞. The optimal rate for ℎ1 is then n−1∕7, producing a root mean

square error of O(n−2∕7).
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Observe that from (A.8),
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By an application of Taylor expansion of order 1 on K we obtain using Lemma A.3 that
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using an argument similar to obtain (A.5) together with (A.6) and (A.7), where Ci40 ði ¼ 1; 2Þ are constants
independent of n. A similar argument yields that
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where C340 is a constant independent of n. Again using Lemma A.3, (A.6) and (A.7), we obtain

EjbgnðXiÞ� gðXiÞjjbgnðXjÞ� gðXjÞj½0pXipph; 0pXjpph�

¼ Ejðbdn � dÞX 2
i þ Aðbd2

n � d2ÞX 3
i jjðbd � dÞX 2

j þ Aðbd2

n � d2ÞX 3
j j

½0pXipph; 0pXjpph�

pC4Efh2Ejbdn � dj þ h3jbd2

n � d2jg2½0pXipph; 0pXjpph�

ARTICLE IN PRESS
R.J. Karunamuni, S. Zhang / Statistics & Probability Letters 78 (2008) 499–507506

Figure 3: Theorem proof in Karunamuni and Zhang (2008)
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