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Abstract

We show that the main results in papers proposing commonly used and attractive boundary
correction methods are incorrect. Indeed, we show that the theorems are false and that the
problem can be addressed by assuming more smoothness and changing the recommendation of

how to choose a secondary input parameter.

1 Introduction

In a series of papers, Zhang et al. (1999, ZKJ), Karunamuni and Alberts (2005, KA), and Karunamuni
and Zhang (2008, KZ) propose some attractive boundary correction methods for nonparametric
kernel density estimators. These results have been used by a substantial number of authors. For
example, KZ has been adopted for the estimation of auction models in economics by Hickman and

Hubbard (2015), which has gained some popularity.

*We thank Sung Jae Jun for valuable comments and Ana Enriquez for guidance on the fair use doctrine.
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Unfortunately, the main results in KA and KZ are false for reasons that we point out in this paper.
Indeed, no estimator can achieve the claimed results under the stated conditions. We focus in our
discussion on KZ, noting that a similar critique applies to KA.

The source of the problem lies in the fact that the KZ methodology requires an auxiliary estimate
of the derivative of the log density at the boundary point. This estimator does not converge at the
rate stated in the paper for reasons we explain in detail in section 2. The problem is that the variance
decreases at a slower rate than what is claimed.

We show that all is not lost, however: the procedure can be fixed. Doing so requires more
smoothness (one extra derivative at the boundary) and a different recommendation for the choice
of the bandwidth A, for the auxiliary estimate. Whereas KZ require the auxiliary bandwidth to
converge faster than the main bandwidth used in the paper, one should in fact make the auxiliary
bandwidth vanish at a slower rate.

The reason for this is simple: having an extra derivative makes the bias of the auxiliary estimate
vanish at the rate hf instead of &,. This allows A, to converge more slowly yet the bias to decrease
faster than would be the case without the extra smoothness. Having s, converge more slowly also
speeds up convergence of the variance.

The fix carries over to papers that use the KZ methodology, including Hickman and Hubbard

(2015). There, also, one should assume an extra derivative and pick the auxiliary bandwidth to
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converge more slowly than n~!/3 but faster than n , ideally at a rate n

We provide a detailed description of the problem in section 2 and propose a fix in section 3.

2 Problem

Given independent and identically distributed random variables X, ..., X, with unknown density

f, KZ’s estimator is defined by
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where A > 1/3 and the bandwidths (A, h,, h,) are chosen by the researcher, K is a second—order
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kernel, and Ky, is a boundary kernel. We quote the statement of their main result regarding the

asymptotic distribution of the above estimator.

Theorem (Theorem 2.1 in Karunamuni and Zhang (2008)). Let fn be defined by (2.8) with h =
O(n='/3). Let hy = o(h). Assume that f(x) > 0 for x = 0, h, and that f® is continuous in a

neighborhood of 0. Then for x = ch, 0 < ¢ < 1, we have'

A ) RO 2 2
Ef,(x)— f(x)= =1 f@0) / ?K(t)dt — 6(A — 1)~——— 70) / (t —c)’K(0)dr ¢ +o(h?)

(KZ-2.10)

and

Var f,(x) = AC ){ / K*(1)dr +2 / K()KQ2c —1) dt} +o((nh)™") (KZ-2.11)

The asserted contribution of KZ’s theorem 2.1 is that the remainder terms in (2.10) and (2.11)
are little o instead of big O as they were in earlier papers. This is purportedly achieved by choosing a
bandwidth A, for estimation of the derivative of the log density at the boundary for which h, = o(h),
where h ~ n~!'/3 is the main bandwidth used in the paper with n the sample size.

The density function f is assumed to be twice differentiable, so its derivative f’ is once differ-
entiable. The optimal nonparametric convergence rate for estimates of (log f)’ is the same as that
of estimates of f’, namely \5/; (see e.g. Stone, 1982). This is true since the bias is O(h,) and the

variance O(1/nh?), such that the root mean square error is O(n~'/) if h; ~ n~'/>. Undersmoothing,

IThere is likely a typo in the second integral in 2.11 in KZ. Based on ZKJ, we state what we believe to be the
intended formula. This discrepancy is immaterial for the point that we make here.



i.e. choosing i, = o(n~'/3), removes the asymptotic bias, but makes the variance vanish more slowly:

the convergence rate is worse.

Lemma A.2. Let [ (1) and [ (0) be defined by (2.4) and (2.5), respectively, with h = hy. Suppose that f*? exists
and is continuous near x = 0. Then

E[f(x) = f(x) WX = xp, Xe = X = O(/I‘l‘).
Jor any integers 1 <k, {<n, and x = 0,h.
Proof. Follows from Lemma A.1 of Zhang et al. (1999). O

Lemma A3. Let d, be defined by (2.3) with h replaced by hy, where hy = o(h). Assume that f(x)=>0 for x = 0,h
and that [\? exists and is continuous near x = 0. Then

E(|dy —d’ |\ Xy = xe, X¢ = x] = O(h}).
for any integers 1 <k, £<n, where d = fV(0)/1(0).

Proof. Similar to the proof of Lemma A2 of Zhang et al. (1999). O

Figure 1: Lemma statements in Karunamuni and Zhang (2008)

We thus agree with (2.10), but (2.11) is false. Indeed, the term that is claimed to be o{(nh) ™'}
in (2.11) would dominate the first right hand side term in (2.11) if A, = o(n~'/%). To see that this is
true, consider lemmas A.2 and A.3 in figure 1, both of which claim a convergence rate faster than
the optimal one (if 4, = o(n~'/%)) and both of which are false.

Indeed, consider lemma A.2. Its proof is claimed to follow from lemma A.1 of Zhang et al.
(1999, ZKJ), which is depicted in figure 2. Lemma A.3 in KZ refers to lemma A.2 of ZKJ, which
also depends on lemma A.1 in ZKJ.

The source of the problems in KZ and KA is equation (A.8) in ZKJ, which says that

i = 0( ! ) =0, for h=0m"). (ZKJ-A.8)

n2h?

The first equality is unobjectionable. The second equality, however, holds only if 4 vanishes no
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faster than n If h converges faster than n then the second equality does not hold. If /4 in
ZKIJ vanishes at a rate faster than n~!'/> then the rate in lemma A.1 of ZKJ is O(h® + 1/n>h?), but
not O(h®).

The consequence for KZ is that the convergence rates in lemmas A.2 and A.3 are O(h? +

1/n% 2hi/ %) and o} + 1/n¥ zh?/ %) respectively instead of O(h®) and O(h?), which are the rates

2In ZKJ it is assumed that 2 ~ n~=!/3 so there the equality holds.



Lemma A.l. Let fi(h) and f(0) be as defined by (13). sup-
pose that f(3)(-) is continuous near 0. Then

E[(fa(2) - f(2))"| Xk = zx, X1 = 1] = O(h®)  (A6)
for any integer 1 < k,!{ < n;z =0,h.

Proof. 'Without loss of generality, we prove (A.6) only for the
case k = 1,1 = 2, and = = h. By the C inequality (Loéve 1963,
p. 157),

E((fa(h) — f(R)*|X1 = 21, X2 = 22]
= E{(fa(h) = E[fa(R)| X1 = 21, X2 = 22])
+ (Elfa(h)| X1 = 21, X2 = za] = f(R)}*
| X1 = z1, X2 = 72}
< CLE{(fa(h) — Elfa(h)| Xy = 21, Xz = za])*
X1 =1, X2 = z2}

+ E{(Blfa(h)| X1 = 1, X2 = 22) ~ f(R))*

| X1 =21, X2 = z2}} c & h— X, he X\
=C(L + I), (A7) - n‘h‘gE[K( h )_EK( h )J
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for3<i<nand1<k<4, wehave
(X2 =21, X2 =22 1
=0 (5) =00, for h=0(m"""). (A8)

¢ Similarly, we can prove

I = O(h®). (A.9)
(A.6) is now proved by combining (A.7), (A.8), and (A.9).

s [ (0 (452 - o (45%))

Figure 2: Lemma in Zhang et al. (1999)

asserted in KZ. If A, ~ n~!/3 then lemmas A.2 and A.3 in KZ would be correct, but that rate would

not be sufficient to bound I in the proof of KZ’s theorem, see figure 3. Indeed, the bound obtained

in (A.12) in KZ would be O(hﬁ/nh?) such that Iy = O(hz/nh?) # O(1/nh).

3 Fix

A simple way of fixing the problem is to assume f possesses one more derivative at the boundary

=175 not faster (which is the recommendation in KZ). All

and to let h; vanish at a rate slower than n
numerical examples considered in KZ are thrice differentiable, hence they possess the additional
derivative.

If f is indeed thrice differentiable at the boundary then f” is twice differentiable, which implies



that the bias is O(h%) and the variance O(1/ nhi’), producing a root mean square error that is o(n~!/%)
if nh - oo and nhl® — 0 as n — oo. The optimal rate for h, is then n~'/7, producing a root mean

square error of O(n~%/7).
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Observe that from (A.8),

R N N 4o IEPLONAE
12<(nh)25{;[1<< h >_K< i )”

=14+ 1s,

where,

X +G,(X)) x+g(X)\]?
1= [ () -k (E)

_ 2 X+ g,(X)\ o (x+9(X)) x+§n(xj)>
o= g S ER(RE) -k ()[R (5
—K<7X+Z(X/)>}. (A9)

By an application of Taylor expansion of order 1 on K we obtain using Lemma A.3 that

he (nh)2z Kgn(X) g(X») K(1)<x+(1—6)g(x,-)+6an<x,-)>]-

and

h

2h4ZE(gn<X)— gD 0<X;<ph]

2
- n2h4ZE{(d DX+ — dz)Xf} [0<X,<ph]

<26
2h4
2C, -~ ) 212

< WZ{E@ —aP0< X, <phl+ E@, — &) [0<X;<ph]}

i=1

Z{E(d — DPXH0<X,<phl + B, - P X0< X, <ph}

<%{hf-h+hf-h}
=o((nh)™"), (A.10)

using an argument similar to obtain (A.5) together with (A.6) and (A.7), where C;>0 (i = 1, 2) are constants
independent of n. A similar argument yields that

C . ~
IsI< =3 Y Elg(X) — g(X)I[G.(X)) — g(X))|

nh I<i<j<n
[0< X <ph, 0< X, <phl, (A.11)
where C3>0 is a constant independent of n. Again using Lemma A.3, (A.6) and (A.7), we obtain
E[§.(X) — gXDIG.(X)) — 9(X)I0< X, <ph,0< X, <ph]
= El(dy — DX + A, — D)X - DX + A, — )X
[0<X;<ph,0< X;<phl
<CLEWPE|d, — d| + B\, — dPI0< X, <ph, 0< X, <ph]
<2CMNEd, — dY [0 X, <ph 0< X, <ph
+ E( &"' —d*V0< X, <ph 0< X, <ph)}
< Csh? {11 E0=X,<ph 0<X < phl}
= O(h* -h] . Ir)
= o(h®) (A.12)

where C; (i =4,5) are positive constants independent of n. Now by combining (A.9)(A.12), we have
I, = 0((,;/1)_'). Similarly, it iseasy to show that I; = 0((11/:)_'

) using the covariance inequality. This completes
the proof of (2.11) and the proof of Theorem 2.1. [

Figure 3: Theorem proof in Karunamuni and Zhang (2008)
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