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Abstract

We study the identification and estimation of treatment effects on the productivity

of firms. Our approach embeds standard methods of production function estima-

tion into a dynamic potential outcome framework. This new framework clarifies the

necessary assumptions and potential pitfalls when quantifying causal effects on pro-

ductivity. Our methods can be applied under weaker assumptions than those have

been previously employed in the literature and do not require a solution to the firm’s

dynamic optimization problem. We apply our method to study the effect of produc-

tion digitalization on productivity growth. Our results robustly show that the aver-

age treatment effect of production digitalization is not significant in a window of five

years after production digitalization. However, we find substantial heterogeneity in

the impact of production digitalization on productivity across time and industries.

Importantly, firms with lower productivity before production digitalization tend to

receive less productivity gains as time evolves.
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1 Introduction

Researchers have long been interested in quantifying the effect of an investment or inter-
vention on a firm’s productivity.1 A natural two-step approach would be to first estimate
the firm’s productivity and then compare this with an estimate of what its productivity
would have been in the counterfactual world absent the change. Problematically, how-
ever, issues can quickly arise if one simply borrows one of the typical methods of estimat-
ing production functions and feeds the estimated productivities into a standard policy
evaluation method for estimating treatment effects. In general, the issue is that both of
these procedures rely on distinct sets of assumptions that may be incompatible with each
other, leading to incorrect inferences about the causal effects (De Loecker and Syverson,
2021). In this paper, we propose a method of estimating causal effects on productivity
that fits the general two-step description but adapt existing methods to ensure that the
assumptions invoked to estimate the realized and counterfactual productivities are con-
sistent and sufficient to identify the treatment effect.

Specifically, when estimating productivities from firm- or plant-level data, researchers
typically assume that productivity follows a Markov process (Olley and Pakes, 1996;
Levinsohn and Petrin, 2003; Ackerberg et al., 2015; Gandhi et al., 2020). Meanwhile, when
estimating treatment effects on productivity, the firm’s productivity in the treated and un-
treated states would typically be modeled as potential outcomes. If the firm’s potential
productivities in the treated and untreated states follow Markov processes, then the re-
alized productivity may not be Markovian. For example, if the intervention of interest
is the adoption of a new production technology, the plant’s potential productivities with
and without the new technology might be modeled as independent Markov processes. In
the period in which the firm first adopts the technology, the firm’s realized productivity
will be its treated productivity, whose distribution depends on the previous treated pro-
ductivity as opposed to the previous untreated productivity that was realized in the data.
As a result, the estimated productivity will be biased if the researcher employs standard
methods which assume the sequence of realized productivities is Markovian. We show
that one can simply restrict attention to periods in which the plant remained treated or un-
treated in sequential periods in order to estimate the production function and the realized
productivity in each period. In fact, one can separately estimate production functions in

1See excellent literature reviews by Bartelsman and Doms (2000) and Syverson (2011). Empirical studies
come from a wide range of fields including trade and development (e.g., Pavcnik, 2003; De Loecker, 2007;
Amiti and Konings, 2007; De Loecker, 2013; Yu, 2015; Brandt et al., 2017), industrial organization (e.g.,
Doraszelski and Jaumandreu, 2013; Braguinsky et al., 2015), political economics (e.g., He et al., 2020; Chen
et al., 2021), and public economics (Liu and Mao, 2019).
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the treated and untreated states in order to allow for some factor-bias in the intervention.
On the other hand, given consistent estimates of the plant’s realized productivity in

each period under observation, the researcher’s remaining task is to estimate the “miss-
ing counterfactual,” the potential productivity that was not realized in the data. If the
intervention is purely exogenous, then a standard difference-in-differences approach can
be used to estimate the average treatment effect. More typically, however, the decision
of when to begin exporting or when to adopt a new technology is likely to be endoge-
nous, and the standard parallel trends assumption is likely to fail. But the structural
assumptions invoked to estimate the productivities can be redeployed to easily solve this
selection issue. Namely, the fact that untreated productivity follows a Markov process
implies that an untreated firm or plant can be matched to a treated one with the same
realized productivity in the period before it was treated in order to fill in the missing
counterfactual.

In comparison with earlier work, our approach is both more generally applicable and
more narrowly focused on estimating the treatment effect. It is more general in the sense
that earlier work estimated returns to research and development or to exporting by as-
suming realized productivity follows a controlled Markov process (e.g., De Loecker, 2013;
Doraszelski and Jaumandreu, 2013; Chen et al., 2021). This assumption is more restric-
tive than the assumption we adopt and may not be satisfied if, for example, potential
producitivies follow independent Markov processes. At the same time, our work is more
narrowly focused because we do not attempt to estimate and identify all the features of
the model. We are only interested in estimating a treatment effect, e.g., the average treat-
ment on the treated where the treatment would be defined as actively investing in R&D or
exporting. As a result, we do not have to solve the firm’s dynamic optimization problem
or identify the entire productivity process in order to measure, for example, the returns
to R&D; we only need to identify the mean productivity in the next period conditional on
current productivity when the treatment status does not change.

Because our goals and requirements are more focused, we opt not to solve the firm’s
dynamic optimization problem as others in the empirical industrial organization litera-
ture have done when faced with the same challenge. Our approach is more typical of the
dynamic potential outcomes literature, in which the treatment selection rule is left un-
specified except for some timing assumptions. Namely, we assume that the firm chooses
its treatment status for the current period before the realization its productivity shock,
but we allow the firm to select into or out of treatment based on its previous treated and
untreated potential productivities. Thus, the firm’s choice of treatment status is modeled
in the same way that capital is in most of the production function estimation literature.
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Our work also relates to earlier work that uses regression-based methods to estimate
causal effects on productivity (e.g., Pavcnik, 2003; Amiti and Konings, 2007; Yu, 2015; He
et al., 2020). In this approach, the firms’ productivities are estimated in a first step that
ignores the variation in the treatment status. In the second step, regression methods are
used to estimate the average effect of a policy on productivity. We argue that because
this procedure only yields consistent estimates of an average treatment effect under the
relatively strong assumptions that realized productivity is Markovian and treatment is
exogenously assigned, our more robust methodology provides a useful alternative.

The rest of the paper is organized as follows. In Section 2, we formally introduce a
model of a firm that uses capital, labor, and intermediate inputs to produce. Output is
further affected by the treatment status in the current period and a Hicks-neutral produc-
tivity factor. The firm’s realized productivity is equal to one of the treated or untreated
potential productivities depending on the firm’s treatment status. The potential produc-
tivities are assumed to follow a Markov process that generalizes the assumptions typically
used in the literature. The key restriction is that the counterfactual productivity in the pre-
vious period is independent of the current productivity if the treatment status does not
change, but we do not restrict the evolution of the potential productivities in the period
in which the treatment status changes. This allows us to accommodate a wide range of
plausible scenarios. As previously mentioned, the potential productivities might evolve
independently of one another. Alternatively, the potential productivities might follow
parallel paths or the treated productivity path might branch from the untreated produc-
tivity path in the period in which the firm selects into treatment. The researcher does not
need to take a stand about the nature of the treatment in order to estimate the treatment
effect.

In Section 3, we review the identification of the production function using Gandhi
et al. (2020) and Ackerberg et al. (2015) in the setting in which treatment status does not
change. We then show how the moment conditions must be modified to allow for vari-
ation in treatment status. Here, the key assumption that enables the proposed method
is that treatment is selected prior to the realization of the productivity shock. Otherwise,
the assumptions and data requirements are analogous to those of Gandhi et al. (2020)
and Ackerberg et al. (2015): we require panel data with at least two periods and many
firms. In addition, we must observe many firms that remain untreated in consecutive pe-
riods, others that remain treated in consecutive periods, and a third group that switches
from the untreated to the treated state in order to identify the production function and
treatment effect. In an appendix, we discuss an alternative assumption and moment con-
ditions that might be used if this assumption on firm types does not appear to be satisfied
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in the data.
In Section 4, we discuss the identification of the average treatment effect on the treated.

The average treatment effect is generally not identified without stronger structural as-
sumptions, and we thus discuss its identification in the appendix. In contrast to the liter-
ature on dynamic treatment effects (Heckman and Navarro, 2007; Abbring and Heckman,
2007; Vikström et al., 2018; Sun and Abraham, 2021), the outcome of interest is not directly
observed, and additional structural assumptions are needed to infer it from data. Apart
from this distinction, our approach builds on the dynamic potential outcome framework.
As has been observed in the literature, one must be careful when defining and identify-
ing treatment effects in a dynamic potential outcome framework because firms who are
treated in one period may return to the untreated state but continue on an altered trajec-
tory as a result of their temporary treatment assignment. We do not add to this discussion,
but acknowledge the complexities involved. For the sake of simplicity, we focus on the
case of an absorbing treatment state in which firms remain forever after they first select
into treatment. Accordingly, our identification and estimation results target the `-period
ahead average treatment effect on the treated, which answers the question of how much
more or less productive a firm is ` periods after it is initially treated compared to what its
productivity would have been if it had remained untreated the entire time.

In Section 6, we use our methodology to estimate the productivity effects of produc-
tion digitalization in the manufacturing sector of China. Recent work has struggled to
find evidence in aggregate production statistics of any productivity gains associated with
the rise of new production technologies (Brynjolfsson et al., 2017). In contrast with our
approach, existing research relies on reduced-form regressions on the productivity esti-
mates to detect the impact of the adoption of new technologies (Draca et al., 2009; Gal
et al., 2019, among others). Our structural analysis of firm-level data shows that, in a
window of 5 years, the average productivity gains from production digitalization are
positive in the first three periods after production digitalization but are negative in later
periods. However, the productivity effects are not statistically significant. Moreover, the
productivity effects of digitalization varies substantially across industries, with industries
using more complex production processes, like equipment, electronics and healthcare,
tend to receive more productivity gains. The results on the firm-specific productivity ef-
fects reveal that the effects of digitalization on productivity become more dispersed as
time evolves. Importantly, we find that firms with lower ex-ante productivity receive less
productivity gains as time goes by. Notably, using the same dataset, we show that the
simple regression of the productivity process leads to the finding of significantly negative
impact of production digitalization on productivity. In general, our empirical results sup-
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port the view that new digital technologies have unequal effects on firms’ productivity,
depending on the firm’s characteristics such as managerial practices (Bloom et al., 2012)
and complementary intangible assets (Bresnahan et al., 2002; Brynjolfsson et al., 2021).

Finally, Section 7 concludes.

2 The Econometric Framework

2.1 A Firm Model with Treatment and Potential Productivity

A firm produces with a Hicks-neutral production technology. Both production technol-
ogy and the productivity’s evolution are affected by some treatment Dit. The treatment
indicator Dit ∈ {0, 1}, with Dit = 1 indicating the firm receives the treatment. The treat-
ment can be imposed externally (e.g., trade liberalization, environmental regulations, etc.)
or chosen by the firm (e.g, R&D investment, importing and exporting, etc.). In period t,
firm i has the following production function

Qit = eωit+ηitF (Kit, Lit,Mit, Dit;β), (1)

where Qit is the output quantity, ωit is the realized productivity, ηit is some ex-post shock
of productivity that is not known when a firm make current period input choices, Kit

is the capital, Lit is the labor, Mit is the material, Dit is the treatment, and β is the pa-
rameter vector. The dimension of β can be infinite when the production function is non-
parametric. Moreover, β can also include a set of time dummies to account for a secular
trend in the production function (e.g., Doraszelski and Jaumandreu (2013)). Note that we
allow the treatment Dit as an input factor,2 which captures possible impacts on manage-
rial efficiencies (Chen et al., 2021).

There are two potential productivity outcomes ω0
it and ω1

it. The binary treatment Dit

determines the realized productivity through the following equation

ωit = ω1
itDit + ω0

it(1−Dit). (2)

The firm knows its potential productivities when making decisions, but the econometri-
cian does not. To facilitate our exposition, we define an indicator for treatment changes.

Definition 1. (Treatment switching indicator) We define a treatment regime change indicator

2Another equivalent formulation of the production function is Qit = eωitF (Kit, Lit,Mit;β(Dit)), which
treats the treatment more like a factor influencing the organization of production.
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Git ∈ {−1, 0, 1}: (1) Positive regime change: Git = 1 if Dit −Dit−1 = 1; (2) Unchanged regime:
Git = 0 if Dit −Dit−1 = 0; (3) Negative regime change: Git = −1 if Dit −Dit−1 = −1.

Conventionally, the realized productivity is assumed to follow a first-order Markov
process (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015). We
generalize this tradition to assume a Markov process for (ω1

it, ω
0
it):

ω1
it = 1(Git = 0)h̄1(ω0

it−1, ω
1
it−1) + 1(Git = 1)h+(ω0

it−1, ω
1
it−1) + ε1it,

ω0
it = h̄0(ω0

it−1, ω
1
it−1),

(3)

where h+ is the transition function of ω1
it when the regime switch is positive . We focus

on a baseline model where the treatment is absorbing and firms can only switch from not-
treated to treated status. Later, we will consider a non-absorbing treatment case where we
can also define a function h− to govern the transition out of treatment. We compare our
Markov process of potential productivity (3) with a traditional Markov process of realized
productivity approach in Section 5, and show that (3) can accommodate more empirical
contexts and has a different causal interpretation. We can even allow the evolution at
the transition process h+ to possibly depend on i but impose the same evolution process
when the treatment variable is constant, but we abstract away from this case to avoid
complicated notation.3 Furthermore, the Markovian productivity process (3) is diagonal
whenever there is no treatment status change:

Assumption 2.1. (Diagonal Markov Process) The function h̄d depends only on ωdit, so we may
abuse notation to rewrite

h̄d(ω
0
it, ω

1
it) = h̄d(ω

d
it),

and E[εdit|ω0
it−1, ω

1
it−1] = 0 for d = 0, 1.

Assumption 2.1 says that, the evolution of potential outcome ω0
it does not depend on

the ω1
it if there is no switching in the treatment status. The assumed productivity evolu-

tion rule generalizes the productivity process considered in the productivity estimation
literature. To see this, consider that Git = 0 for all i and t, then the productivity evolution
can be captured by ωdit = h̄d(ω

d
it−1) + εdit, for d ∈ {0, 1}. Therefore, we can think of the con-

ventional productivity process (e.g., Olley and Pakes (1996)) as the case of no treatment,
i.e. Dit = 0. The generalized productivity evolution process (3) also has economic mean-
ing closely related to a wide range of empirical studies. We now give several examples
of productivity processes that satisfy equation (3), though the econometrician does not
need to assume that the evolution process fits any one of these narratives. The truth can
be something of a mixture of the following or other more exotic productivity processes.

3For example, different firms may have different regime switch time within a year, which may lead to
the difference in h+i .
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Example 1. (Parallel Shifted Productivity) In many empirical contexts, a policy simply shifts
the productivity upwards. This context can be realized by imposing: (1) Initial period shift, i.e.
ω1
i1 = ω0

i1 + C almost surely for some constant C; (2) ε1it = ε0it almost surely for all t; (3) The
evolution functions satisfy h̄1 = h+, and h̄1(ω) = h̄0(ω − C) + C. These conditions lead to
ω1
it = ω0

it + C almost surely for all i, t.

Example 2. (Divergence of Productivity when Treatment Diverges.) Consider a case where the
binary treatment represents whether a firm invests in R&D. If a firm chooses to switch from not
investing in R&D at t to investing in R&D at t+ 1, then only ω0

it matters for the determination of
ω1
it+1. In this case, only the observed potential outcome before the regime switching matters for the

productivity process. This model can be captured by imposing h+(ω0
it, ω

1
it) = h+(ω0

it). Essentially,
we are imposing ω1

it ≡ ω0
it for all pre-treatment periods t.

Example 3. (Independent Productivity Evolution Process) In some cases, a firm needs to choose
between two types of technologies. Each technology evolves without being influenced by the other
technology. Firms can choose which technology to use. In this case, h̄1 = h+.

Firms’ Behavior and Timing of Firms’ Decisions

We follow Ackerberg et al. (2015) and Gandhi et al. (2020) to distinguish the static inputs
and the pre-determined inputs.

Assumption 2.2. (Timing of Inputs) Capital Kit is determined at or before t − 1, labor can be
determined at or before t − 1 or a static input chosen some time in period t. Intermediate input
Mit is determined no sooner than other inputs after the realization of ωit.

The treatment variable can be either determined by the external environment or cho-
sen by the firm. We distinguish these two cases and make the following assumption on
its timing.

Assumption 2.3. (Timing of Treatment) (1) When the treatment is externally imposed, Dit is
determined at or before t − 1; (2) When the treatment is a firm choice, Dit is chosen after the
realization of (ω0

it−1, ω
1
it−1) but before (ω0

it, ω
1
it).

Firms make two types of choices at the time t. First, given the realized productivity
ωit and pre-determined inputs, firms choose the static inputs to maximize its short-run
revenue. Then, firms choose the next period pre-determined inputs and possibly the treat-
ment statusDt+1 in period t+1 given a vector of state variables Sit ≡ (Kit, Lit, Dit, ω

1
it, ω

0
it, ζit),

where ζit is an idiosyncratic cost shock relevant the dynamic decision4. We summarize the

4For example, ζit can be an idiosyncratic cost of taking treatment.
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firm-decision timeline in the following graph and define the firms’ information set corre-
spondingly.

Figure 1: Timeline for firm’s decision.

Definition 2. When deciding the (Kit+1, Lit+1, Dit+1,Mit), firm i’s time-t information set is
given by

IFit = {Kit, Lit, (ω
0
is, ω

1
is, Dis, kis−1, lis−1,Mis−1, ζis)s≤t}.

In the case of externally assigned treatment, our firm behavioral model bears features
similar to a large class of firm models considered in productivity estimation (Olley and
Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015; Gandhi et al., 2020). How-
ever, in the case of endogenously-chosen treatment, firms can choose treatment status
based on the potential productivity values and this leads to selection of Dit+1 on firms’
information set IFit . Our firm model allows for the existence of unobserved dynamic cost
shock ζit. This additional unobserved heterogeneity can bring additional difficulty of
identifying the treatment effect on productivity. This is different from the endogenous
productivity literature (Aw et al., 2011; De Loecker, 2013; Doraszelski and Jaumandreu,
2013; Peters et al., 2017) who are interested in the productivity differences between treat-
ment takers and non-treatment takers.

2.2 Treatment-Effect Objects

A switch of the regime, i.e. Git = 1, influences the production process through three as-
pects. First, the level of productivity switches from ω0

it to ω1
it. This change is instantaneous

and may not be carried over time. Second, if treatment status persists, the productivity
evolution process is changed from h̄0 to h̄1. This switch has a long-term effect that ac-
cumulates over time. Third, the production function can be different, i.e. the relative
efficiency of inputs can be influenced by the treatment.

In addition to the traditional individual treatment effect at time t: ω1
it − ω0

it, we also
consider other two types of treatment effects originating from the dynamic productivity
process. We formally define these treatment effects as follows:
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Definition 3. The individual treatment effect for firm i at time t is ω1
it − ω0

it. The trend effect is
given by the function h̄1(·)− h̄0(·).

When a firm switch its treatment status at time t, it materializes two effects: The trend
effects h̄1(·)− h̄0(·), which accumulates over time, and the one-time effect ω1

it−ω0
it. Unlike

the traditional dynamic treatment effect literature where the objective outcome variable is
usually observed, the productivity is unobserved, and the structural evolution process (3)
is the key assumption that allows us to identify the production function parameters. Our
goal is to discuss whether the treatment effects in Definition 3 are separately identified
from each other and under what assumptions the treatment effects can be identified.

3 Recovering the Unobserved Productivity

Econometric analysis of the productivity relies on the Markov property of the evolution of
productivity (3). However, the econometrician does not know the unobserved potential
productivity and has to identify it first.

Assumption 3.1. The econometrician has access to the instrument setZit = IFit /{(ω1
is, ω

0
is, ζis)s≤t}.

Moreover, E[εit|Zit] = 0, and E[ηit|Zit,Mit] = 0.

Assumption 3.1 is standard in the classical production function estimation literature,
and it is typically implied by the firms’ timing assumption. The econometrician cannot
observe the potential productivity and the hidden cost heterogeneity ζis. We will maintain
Assumption 3.1 throughout the rest of this paper.

3.1 Recovering the Productivity in the Absence of Treatment

We first review the case where Dit = 0 for all i and t, i.e. there is no treatment at all.
As a result, the realized productivity ωit = ω0

it plays the role of influencing final output
quantities. There are two strands of literature that use different moments to identify the
production function parameters. For the gross output production function, we follow
the GNR (Gandhi et al., 2020) method and use an additional material-to-revenue first
order condition. For the value-added production function, we follow the ACF (Ackerberg
et al., 2015) method and material proxy approach. In both cases, a conditional mean zero
assumption on the productivity shocks are imposed. We use the lower and upper case
letters represent logs and levels of the corresponding variables, respectively.
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GNR Approach. The GNR first-order condition approach uses the following material-
to-revenue share equation

E
[
sit − log

(
∂f0(kit, lit,mit;β)

∂mit

) ∣∣∣kit, lit,mit

]
= 0 ∀t = 1, ..., T, (4)

where sit is the logged material share and f0(kit, lit,mit;β) ≡ f(kit, lit,mit, Dit = 0;β). The
estimation of other production function parameters relies on the productivity evolution
process:

E[ωit(β)− h(ωit−1(β))|{kit, lit, kit−1, lit−1,mit−1}] = 0 ∀t = 1, ..., T, (5)

where the productivity is recovered from ωit(β) = qit − f0(kit, lit,mit;β).

ACF Value-added Approach. Consider the value-added production function f0(kit, lit;β).
The material mit is a strictly monotone function of ωit and hence the non-parametric in-
version ωit = g(kit, lit,mit) exists. They first identify the non-parametric object

Φit−1(kit−1, lit−1,mit−1) ≡ E[qit−1|kit−1, lit−1,mit−1], (6)

and use the moment condition

E [ωit(β)− h [Φit−1(kit−1, lit−1,mit−1)− f0(kit−1, lit−1; β)] | {kit, lit, kit−1, lit−1,mit−1}] = 0.

(7)
In the absence of a policy, both methods result in non-parametric identification of the
production function.

Lemma 3.1. If there is no treatment in the model, then: (1) The moment conditions (4) and (5)
identify the gross production function β nonparametrically up to a constant difference; (2) The
moment conditions (6) and (7) identify the value-added production function β nonparametrically
up to a constant difference. Moreover, the h is identified nonparametrically in both the GNR and
ACF cases.

Proof. The proof of statement (1) is given in GNR. We use the techniques in GNR to prove
statement (2). Let ωit−1(β) ≡ Φit−1(kit−1, lit−1,mit−1) − f0(kit−1, lit−1;β). We first note that
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E[qit| {kit, lit, kit−1, lit−1,mit−1}] = f0(kit, lit;β)− h(ωit−1(β)). Then we have:

∂E[qit| {kit, lit, kit−1, lit−1,mit−1}]
∂kit

=
∂f0(kit, lit)

∂kit
,

∂E[qit| {kit, lit, kit−1, lit−1,mit−1}]
∂lit

=
∂f0(kit, lit)

∂lit
.

Therefore, f0 is identified up to an additive constant by the existence of solution to partial
differential equations.

It is important to note that Lemma 3.1 says that the production function is identified
only up to a constant difference. Mathematically, if (F, h) is identified by the GNR or
ACF method, then (ecF, h̃) where h̃(ω) = h(ω − c) also satisfy the GNR or ACF moment
constraints for all c ∈ R. We will come back to this scale non-identification and illustrate
its importance in our econometric setting.

3.2 Recovering the Productivity with Variations in Treatment Status

We now extend the identification result to the case with a policy intervention. While the
treatment can be chosen by the firm, we assume a conditional exogenous treatment, i.e.
the treatment is exogenous to productivity shocks (ε1it, ε

0
it).

Assumption 3.2. (Conditional Mean-Zero Shocks) The productivity shock (ε0it, ε
1
it) satisfies

E[(ε0is, ε
1
is)|Zit] = 0, ∀s ≥ t.

Assumption 3.2 allows the treatment decision to be dependent of the past potential
outcomes ω0

it−1 and ω1
it−1. Consider a case where Dit is selected by the firm. A firm may

observe its productivity (ω0
it−1, ω

1
it−1) when making the decision on whether to adopt the

treatment or not, and the productivity shocks (ε0it, ε
1
it) realize after the firm’s choice of Dit.

When the treatment is externally determined, this assumption implies that the assign-
ment rule of treatment is independent of productivity shocks.

Assumption 3.3. There exist two periods t0, t1 such that Pr(Dit0 = Dit0−1 = 0) 6= 0 and
Pr(Dit1 = Dit1−1 = 1) 6= 0.

Theorem 3.1. Suppose Assumptions 2.1- 3.3 hold. The moment condition (4) (and respectively
(6)) and

E[ωit(β)− h̄0(ωit−1(β))|Zit, Dit = Dit−1 = 0] = 0, (8)

E[ωit(β)− h̄1(ωit−1(β))|Zit, Dit = Dit−1 = 1] = 0, (9)
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identify the production function parameter β and the evolution process h̄d nonparametrically up
to a constant difference that depends on d.

Proof. We first look at equation (8), and the proof of expression (9) follows similarly. We
can write

E[ωit(β)− h̄0(ωit−1(β))|Zit, Dit = Dit−1 = 0]

= E[ω0
it(β)− h̄0(ω0

it−1(β))|Zit, Dit = Dit−1 = 0]

= E[ε0it|Zit, Dit = Dit−1 = 0] = 0

(10)

where ω0
it(β) denotes the potential productivity without treatment, recovered under pa-

rameter value β and Dit = 0. The first equality of (10) holds by the potential outcome
equation and the last equality holds by Assumption 3.2. The moment condition (8) is
well defined by Assumption 3.3. By Lemma 3.1, the result follows.

The non-identification of the scale of the production function can contaminate the
identification of treatment effects. Namely, if (F (·, 0;β), h̄0) and (F (·, 1;β), h̄1) satisfy
the moment conditions in Proposition 3.1, then (ec0F (·, 0;β), , h̃0) and (ec1F (·, 1;β), h̃1)

also satisfy the moment conditions in Proposition 3.1 for h̃d(ω) = h̄d(ω − cd). This means
that we cannot distinguish the ω1

it recovered under (F (·, 1;β), h̄1) from the ω̃1
it recovered

under (ec1F (·, 1;β), h̃1). In particular, we have ω̃dit = ωdit − cd.5 As a result, we must nor-
malize the scale of production functions before and after the treatment to interpret the
treatment effect on productivity.

When treatment status does not vary, this normalization is innocuous because it merely
shifts the location of the log-productivity distribution. Thus, one might choose to normal-
ize the scale of the production function such that the mean log-productivity is zero. When
treatment status varies, however, centering the log-productivity distribution in both the
treated and untreated states complicates the interpretation of the estimated treatment ef-
fect. For instance, the estimated average treatment effect would be zero if firms were
randomly selected into a treatment that increases productivity by a fixed percentage be-
cause the mean productivity in both states was “normalized” to zero. Instead, we suggest
normalizing the scale of the production function.6

To implement the moment conditions in Theorem 3.1, we must discard the transition
periods, which can be inefficient if the transition periods consist of large part of the data.

5This scale non-identification is also present in the multi-product context (Chen and Liao, 2021).
6One particular choice is to compute the industry mean of inputs across all periods, (K̄, L̄, M̄), and

impose F (K̄, L̄, M̄ , 1,β) = F (K̄, L̄, M̄ , 0,β). If we impose the production functions before and after the
treatment to be the same, then there is no need to additionally normalize the scale.
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We therefore propose some additional moment conditions that use the transition periods
under special empirical contexts, see details in Appendix C.1.

Other Structural Objects In this firm model, there are many other interesting structural
objects, such as the transition evolution function h+ . This structural object is generally
not identified under the assumptions in Theorem 3.1: The transition evolution function
h+ are not identified because we cannot observe ω1

it and ω0
it simultaneously.

3.3 A Revisit to Existing Methods

In this section, we use a simple example to illustrate the limitations of two commonly
used methods in recovering the productivity with the presence of treatment: the ex-post
regression method (Pavcnik, 2003; Amiti and Konings, 2007; Yu, 2015; Chen et al., 2021;
He et al., 2020) and the endogenous productivity evolution method (De Loecker, 2007;
Doraszelski and Jaumandreu, 2013; Chen et al., 2021). Without loss of generality, we
assume that the production function is treatment-invariant.

We consider a simple “difference-in-difference” policy context: An exogenous policy
shock happens at t = T0 + ∆ for ∆ ∈ (0, 1). A random subset of firms is influenced by
the policy while others are not, and firms are separated into treated and control groups.
For the firms in the controlled group, Dit = 0 for all t. In this context, the policy variable
Dit is fully exogenous to the productivity process.7 For the firms in the treated group,
Dit = 1(t ≥ T0 + 1).

We use this empirical context to show that the ex-post regression method is invalid,
and the endogenous productivity method can only accommodate very restricted empiri-
cal scenarios. We also define an alternative instrument set Z ′it = {kit, lit, kit−1, lit−1,mit−1}
which is used in the expost-regression method.

The Ex-post Regression

The ex-post regression method consists of two steps: First, it estimates the firm model
ignoring the existence of policy effect. To do so, it estimates the production function
parameter β and the evolution process h using (4) and (5). Second, given the estimated
parameter β̂ and ĥ, recover the pseudo firm-level productivity ω̂it = qit− f(kit, lit,mit; β̂).
They analyze the individual treatment effect based on ω̂it. For example, ex-post regression
method runs a two-way fixed effect regression by treating ω̂it as the outcome variable.

7 The policy exogeneity is only imposed here for illustration purpose.
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The ex-post regression method bears the following problem: The trend difference
h̄1 6= h̄0 is ignored in this method when estimating the productivity, and consequently
the moment equality (5) fails. To see this, we first note that for all pre-treatment period
t ≤ T0, the moment equation (5) becomes

E[ω0
it(β)− h̄0(ω0

it−1(β))|Z ′it] = 0 ∀t ≤ T0.

By Proposition 3.1, this moment condition identifies β and h̄0. We now derive the incon-
sistency of (5). For t ≥ T0 + 2, the moment condition (5) becomes

(5) = E[ωit(β)− h̄0(ωit−1(β))|Z ′it]

=(1) E[ω0
it(β)− h̄0(ω0

it−1(β))|Z ′it, Dit = 0]Pr(Dit = 0)

+ E[ω1
it(β)− h̄0(ω1

it−1(β))|Z ′it, Dit = 1]Pr(Dit = 1)

=(2) E[ω0
it(β)− h̄0(ω0

it−1(β))|Z ′it]︸ ︷︷ ︸
Part A

Pr(Dit = 0) + E[ω1
it(β)− h̄0(ω1

it−1(β))|Z ′it]︸ ︷︷ ︸
Part B

Pr(Dit = 1)

(11)

where β and h̄0 are the quantities identified from moment conditions t ≤ T0, and we use
the exogenous policy assumption to derive the equality (2). Part A in equation (11) is zero
because it is consistent with the moment condition t ≤ T0. However, if h̄1 6= h̄0, then Part
B is not zero and the moment condition (5) fails for all t ≥ T0 + 2.

Under the misspecified model, the estimator β̂ is not consistent for the true β. As a
consequence, ω̂it is not a consistent estimator of ωit, and the subsequent treatment effect
evaluation is incorrect.

The Endogenous Productivity Method

The endogenous productivity method in De Loecker (2007) and Doraszelski and Jauman-
dreu (2013) includes the interested treatment variable in the productivity process as:

ωit = h̃(ωit−1, Dit) + εit.

This method solves the misspecification of the productivity process for treated and con-
trolled group. Indeed, by defining h̄d(·) = h̃(·, d) for d = 0, 1, we can show that moment
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condition (5) can be transforms to

E[ω0
it(β)− h̄0(ω0

it−1(β))|Zit] = 0 ∀t ≤ T0, and

E[ω0
it(β)− h̄0(ω0

it−1(β))|Zit, Dit = Dit−1 = 0]Pr(Dit = Dit−1 = 0)

+E[ω1
it(β)− h̄1(ω1

it−1(β))|Zit, Dit = Dit−1 = 1]Pr(Dit = Dit−1 = 1) ∀t ≥ T0 + 2,

(12)

and the moment condition at the regime-switching period T0 + 1:

E[ω0
iT0+1(β)− h̄0(ω0

iT0
(β))|Z ′iT0+1, DiT0+1 = DiT0 = 0]︸ ︷︷ ︸

Part A

Pr(DiT0+1 = DiT0 = 0)+

E[ω1
iT0+1(β)− h̄1(ω0

iT0
(β))|Z ′iT0+1, DiT0+1 = 1, DiT0 = 0]︸ ︷︷ ︸

Part B

Pr(DiT0+1 = 1, DiT0 = 0) = 0.
(13)

Moment conditions (12) are correctly specified. In particular, by Proposition 3.1, β, h̄0 are
identified from the t ≤ T0 moment equality (12), and h̄1 is identified from the t ≥ T0 + 2

moment equality (12).
However, the moment condition at the regime switching period (13) is misspecified.

Let h̄0 be identified from (12). Part A in (13) equals zero. However, the Part B may not
equal zero. Given the evolution process (3), the transition process at the positive regime
switching period should be h+(ω1

it−1, ω
0
it−1), where in the Part B of (13), the transition

process is h̄1(ω0
it−1). This will lead to a possible misspecification issue. We now show that

for the examples in Section 2, the structural evolution method only works with strong
assumptions.

Let’s first consider Example 1. At time T0 + 1, the treated firm’s observed last period
productivity is the untreated potential outcome ω0

iT0
. In particular, consider the follow-

ing productivity process: (1) ω1
it = ω1

it−1; (2) ω0
it = ω0

it−1; (3) ω1
it = ω0

it + C. In this case,
productivity is constant over time, and both h̄1 and h̄0 are the identity map. The transi-
tion functions also satisfy h+ = h̄. Therefore, the Part B of (13) becomes E[ω1

iT0+1(β) −
ω0
iT0

(β)|ZiT0+1, DiT0+1 = DiT0 = 1]. The moment value of the Part B is C at the true pro-
duction parameter rather than 0, so the model is misspecified.

In Example 2, the evolution at the transition period only depends on the observed
outcome in the last period. If we impose h+ = h̄1, then the Part B of (13) equals zero
and the model is not misspecified. However, this is a strong assumption and may not be
satisfied in some empirical contexts. Let’s consider the regime switch happens at T0 + ∆

for some ∆ < 1. In this case, ω0
iT0

first evolves to ω0
iT0+∆ under the controlled process h̄0,

and then the treatment status changes and the productivity evolves from ω0
iT0+∆ to ω1

iT0+1.
In other words, the productivity only enjoys the benefit of the policy effects during the
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period [T0 + ∆, T0 + 1]. If the policy variable DiT0+1 affects the productivity process at the
beginning of the period, then it is likely that h̄1 6= h+.

4 Evaluating the Treatment Effect on Productivity

Recall that the treatment effect of interest are given in Definition 3. Since we only observe
a firm either in the treated or non-treated state, the individual treatment effect ω1

it − ω0
it is

typically not identified. Therefore, we focus on the average treatment effect on the treated
(ATT). Identifying average treatment effect (ATE) is generally difficult and requires more
structural assumptions. We instead discuss the idenfitification of ATE in Appendix A.2.

Corollary 4.1. Under Assumption 2.1-3.3, if there exists a t such that Pr(Dit = Dit−1 = d) 6= 0,
we can recover the potential productivity ωdit + ηit for firms such that Dit = d.

Proof. Recall that from Proposition 3.1, β and the evolution process h̄d is identified. As
a result, if firm i’s treatment status is Dis = d, we can recover productivity ωis + ηis =

(qis − f(kis, lis,mis, Dis;β), which is ωdis + ηis since Dis = d.

Since the individual effective productivity is identified, the econometrician can view
ωit as ‘observed’ up to a mean zero random perturbation ηit. In many cases, ηit is purely
random and cannot be separated from the firm productivity. We thus omit the ηit in our
discussion below. We now define the econometrician’s information set as below.

Definition 4. The econometrician’s information set is IEit = Zit ∪ {ωis}s≤t−1 ⊂ IFit .

For ATT, we find it instructive to discuss the identification for absorbing treatment
and non-absorbing treatment, separately.

4.1 ATT: Absorbing Treatment

The absorbing treatment is at the core of literature on estimating dynamic treatment ef-
fects (Sun and Abraham, 2021; Athey and Imbens, 2022). As a benchmark for analyzing
ATT, we consider the absorbing policy for which the treatment indicator is non-decreasing
Dit−1 ≤ Dit. For any treatment that is not absorbing, we can replace the treatment status
Dit with an indicator for ever having received the treatment to obtain a new treatment
being absorbing.8

8For example, Deryugina (2017) defines the treatment to be “having had any hurricane” and investigates
its impact on the fiscal cost for a county.
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Let ei > 1 be the first period that firm i starts to receive treatment.Since the treatment
is absorbing, when the firm i belongs to the treated group, we have Git = 1 for t = ei

and Dit = 1 for all t ≥ ei. We maintain Assumption 3.2 on the exogeneity of productivity
shocks. Let g be a subgroup of firms whose treatment effects of interest to us, and ` ≥ 0 be
the time relative to the first treatment period. It is helpful to think of group g as a cohort
of treatment, and we may be interested in the treatment effect for different cohort. The
`-period-ahead ATT at time t for group g is given by

ATTg,` = E[ω1
it − ω0

it|t = ei + `, i ∈ g]. (14)

Failure of the Simple Parallel Trend Assumption Even the treatment is not randomly
assigned, the Difference-in-Difference method allows us to identify the ATT if a parallel
trend assumption is satisfied. We first look at a simple parallel trend assumption that is
needed in the Diff-in-Diff analysis:

Assumption 4.1. (Simple Parallel Trend) The following condition is the simple parallel trend
condition:

E[ω0
it − ω0

it−1|ei = t] = E[ω0
it − ω0

it−1|ei > t]. (15)

If condition (15) holds, then the ATTg,0 is identified as E[ωit|ei = t] − E[ωit−1|ei =

t] − (E[ωit|ei > t] − E[ωit−1|ei > t]). However, Assumption 4.1 is a high-level condition
because it is imposed on the potential productivity before and after the treatment and can
be hard to justify. To see it, note that from the productivity process (3), we can derive that:

positive switchers: E[ω0
it − ω0

it−1|ei = t] = E[h̄0(ω0
it−1)− ω0

it−1|ei = t],

non switchers: E[ω0
it − ω0

it−1|ei > t] = E[h̄0(ω0
it−1)− ω0

it−1|ei > t],
(16)

where we use the condition (3.2) to derive (16). From (16) we see that the parallel trend
condition can fail due to the selection into treatment: The treatment Dit can depend on
the value of ω0

it−1 and can correlate with the initial treatment time ei. Consider Example 2
with a R&D decision, the firm chooses to invest in R&D only when ω0

it−1 exceeds a certain
level. In this case, Diei is a function of ω0

it−1, and (15) does not hold.

The Conditional Parallel Trend Assumption Now, we propose an alternative proce-
dure that identifies the ATTg,` when the transition processes at the regime switch period
coincide for the treated and controlled group. First we note that, by further conditional
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on the value of ω0
it−1 in equation (16), we have

E[ω0
it − ω0

it−1|ei = t, ω0
it−1] = h̄0(ω0

it−1)− ω0
it−1,

E[ω0
it − ω0

it−1|ei > t, ω0
it−1] = h̄0(ω0

it−1)− ω0
it−1.

(17)

The two equations in (17) coincide as a result of the assumptions used to estimate the
production function and productivity process. We call this the conditional parallel trend
assumption.

To clarify the meaning of the conditional parallel trend assumption, we introduce a
more general evolution process for the ω0

it:

ω0
it = 1(Git = 0)h̄0(ω0

it−1) + 1(Git = 1)h+
0 (ω0

it−1, ω
1
it−1) + ε0it. (18)

This general framework allows the potential untreated productivity to have a different
evolution process when firms switch the treatment status. Equation (17) is a direct conse-
quence of imposing h+

0 = h̄.

Assumption 4.2. (Conditional Parallel Trend) h+
0 (ω0

it, ω
1
it) = h̄0(ω0

it).

Assumption 4.2 is structural in the sense that it is imposed on the rule of productiv-
ity evolution rather than the cross-period potential outcome variables (ω0

it, ω
0
it−1). The

structural parallel trend assumption 4.2 has the following economic meaning: Transition
function for the untreated potential outcome is not influenced by the treatment status.

In the baseline absorbing treatment case, the evolution process (3) imposes Assump-
tion 4.2 directly because the conditional parallel trend assumption is quite natural: if the
firm had not entered treatment then its counterfactual untreated productivity would of
course have evolved according to h̄0.

When the treated state is not absorbing, however, the conditional parallel trend as-
sumption is restrictive because the untreated productivity process may be realized again
in the future. For example, if temporarily adopting a new technology destroys some in-
tangible capital associated with the old technology, then the conditional parallel trend
assumption would fail. In this case, it may be worthwhile to consider the more general
process (18).

Identifying Treatment Effect Object Based on the implication of (17), we can study the
following l-period-ahead conditional average treatment effect on the treated (CATT):

CATTg,l(ω) = E[ω1
it − ω0

it|t = ei + l, ωiei−1 = ω, i ∈ g],
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which further conditions on the pre-treatment realized productivity. By law of iterative
expectation, ATTg,l = E[CATTg,l(ωiei−1)], and we can identify ATTg,l if CATTg,l(ω) is
identified.

Proposition 4.1. Under Assumption 4.2, the 0-period-ahead CATT is identified asCAATg,0(ω) =

E[ωiei − h̄0(ωiei−1)|i ∈ g, ωiei−1 = ω]. Consequently, the 0-period-ahead ATT is identified as
ATTg,0 = E[ωiei − h̄0(ωiei−1)|i ∈ g].

Proof. Note that by further conditional on the group ei = t,

(CATTg,0(ω)|ei = t) =(1) E[ωit − h̄0(ω0
it−1)|t = ei, i ∈ g, ωiei−1 = ω]

=(2) E[ωit − h̄0(ωit−1)|ei = t, i ∈ g, ωiei−1 = ω],

where (1) by replacing ω0
it with the evolution process and using Assumptions 3.2 and 4.2,

(2) follows by the potential outcome (2) and ωiei−1 = ω0
iei−1. Further take the expectation

with respect to the treatment time ei to get the result.

In general, the `-period-ahead CATT and ATT is not identified for ` ≥ 1, because
we cannot recover the untreated potential outcome ω0

iei+`−1. Moreover, the substitution
of in Proposition 4.1 does not work without further restrictions. We now give several
assumptions that help identify the `-period-ahead ATT.

For notation purpose, let h̄`0 be the `-period productivity transition process, we can
write ω0

iei+`
= h̄

(`)
0 (ω0

iei
, (ε0is)

ei+l
s=ei

). We now consider a strong constraint on the productivity
shocks but relax the constraint on the shape of h̄0.

Assumption 4.3. There is a group-time pair (g′, s) such that all firms i′ such that i′ ∈ g′ are
untreated by l-periods since time s, i.e. ei′ > s + l. Moreover, the conditional distribution of
(ε0iei , ..., ε

0
iei+l

)|(i ∈ g, ω0
is−1) is the same as the conditional distribution of (ε0i′s, ..., ε

0
i′s+l)|(i′ ∈

g′, ω0
is−1).

We will discuss an example for the group g and g′ later. The group g′ firms serve
as the controlled match for the treated firms in g. We require more than the conditional
mean-independence of the future productivity shocks with respect to the treatment time.
Assumption 4.3 allows for nonlinearity in h̄(s)

0 (·).

Proposition 4.2. Suppose Assumption 4.2 and 4.3 hold. Then the `-period-ahead CATT is identi-
fied as CATTg,`(ω) = E[ωiei+`|i ∈ g, ωiei−1 = ω]−E[ωis+`|i ∈ g′, ωis−1 = ω]. The corresponding
ATT is identified as ATTg,` = E[CATTg,`(ωiei−1)|i ∈ g], where the expectation is taken over the
conditional distribution of ωiei−1 given i ∈ g.
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Proof. By the definition of CATT:

CATTg,`(ω) =(a) E[ωiei+`|i ∈ g, ωiei−1 = ω]− E[h̄
(`)
0 (ωiei−1, ε

0
iei
, ..., ε0iei+`)|i ∈ g, ωiei−1 = ω]

=(b) E[ωiei+`|i ∈ g, ωiei−1 = ω]− E[h̄
(`)
0 (ωis−1, ε

0
is, ..., ε

0
is+`)|i ∈ g′, ωis−1 = ω]

=(c) E[ωiei+`|i ∈ g, ωiei−1 = ω]− E[ωis+`|i ∈ g′, ωis−1 = ω],

(19)

where (a) follows by the productivity evolution process and the potential outcome equa-
tion, (b) follows by Assumptions 4.3, and (c) follows by the productivity evolution proce-
dure for untreated firms.

Proposition 4.2 requires us to match over the lagged productivity for each group g-
firms with g′-firms since time s. This is because we cannot observe the untreated shocks
ε0it for treated firms and the higher order moments of ε0it matters for the `-period evolution
process h̄(`)

0 . We present an empirical context where the matching group g′ can be found.

Example 4. In many empirical setting, we are interested in a cohort of firms which start their
treatment in period g0: g = {i : ei = g0}. In this case, we can use the g0 + l + 1-not-yet-treated
firms as the control: g′ = {i′ : ei′ > g0 + l} and set the time s = g0.

In this case, Assumption 4.3 hold under the following empirical context: Before g0, no firms
are treated. At time g0, firms can decide whether to take the absorbing treatment. Between g0 and
g0 + l + 1, firms cannot change their treatment status due to regulations or contracts.

Then at the time g0, firm make the decision on whether the initial treatment time ei is ei = g0

or ei > g0 + l, and firms can only make treatment choice based on their information set IFig0 ,
which does not contain information on future shocks (ε0ig0 , ..., ε

0
ig0+`). This example can be seen in

many government policy reforms that rolls out in several phases. For example, the privatization
of Chinese State-Owned enterprise starts with an experiment phase in northeast provinces, and
gradually roll out to the rest of the country.

However, if all firms can choose the initial treatment time freely after g0, then Assumption
4.3 typically fails for the g0 + l + 1-not-yet-treated firms: A firm chooses not to be treated until
g0 + l + 1 are likely the firms whose potential productivity (ε0iei , ..., ε

0
iei+l

) are high and they are
reluctant to switch to the treated status. In this case, we can choose g′ = {all firms} and s = 2

in Assumption 4.3 : We use all firms and periods before the initial treatment period g0, and use the
firms’ initial productivity ωi1 as the match.

To identify ATTg,l from Proposition 4.2, we typically need to match a treated firm with
a controlled firm with the same lagged productivity. This matching procedure can be
hard to implement due to two reasons: (1) We may not be able to find a (g′, s) pair that
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satisfies the independence restriction; (2) Even when (g′, s) is found, we may not have
enough observation in group-time pair (g′, s). Moreover, if all firms are treated at g0 + l,
we cannot identify the ATTg0+l+s for all s > 0. We thus propose a stronger condition:

Assumption 4.4. (i). The shocks satisfy ε0is ∼i.i.d. G0
ε(·), where the i.i.d is over both firm index i

and time index s. (ii). We can find a group-time pair (g′, s) such that all firms in g′ are untreated
in period-s. (iii). There is no selection in shocks: ε0i′s|i′ ∈ g′ ∼ G0

ε(·) and ε0it|i ∈ g ∼ G0
ε(·) for all

t ≥ ei.

There are two things in Assumption 4.4: First, we assume that the productivity shocks
are i.i.d across both firms and time. This assumption allows us to impute the unobserved
productivity shocks for group-g firms using the distribution G0

ε ; Second, we can find a
controlled-matching group g′ and time s such that the marginal distribution of ε0is is iden-
tified.

Proposition 4.3. Under Assumption 4.2, 4.3, 4.4, G0
ε is identified, and the `-period-ahead CATT

for group g is identified as

CATTg,`(ω) = E[ωiei+`|i ∈ g, ωiei−1 = ω]− E(G0
ε )
` [h̄

(`)
0 (ωiei−1, ε

0
is, ..., ε

0
is+`)|i ∈ g, ωiei−1 = ω],

where the second expectation is taken over the joint distribution of (ε0iei , ..., ε
0
iei+`

).

Proof. With the identified h̄0 from Proposition 3.1, for any group-g′ firm i at time s, we
can recover its ε0is ≡ ωis − h̄0(ωis−1), so the distribution G0

ε is identified. By condition (iii)

in Assumption 4.4, the joint distribution of (εiei−1, ..., εiei+l) is identified as the product
distribution (G0

ε)
`. The identification result follows by the evolution process (10).

Proposition 4.3 implies a simulation-based method to estimate ATT. We illustrate the
method using Example 4: Suppose all firms are not treated before t = 3, and firms can
choose to select whether to take the treatment from t = 3. In this case, using the period
t = 2 data, we can recover the pre-treatment shocks ε0i2 for all firms and identify the
distribution G0

ε . If the conditions in Proposition 4.3 is satisfied, for each treated firm, we
can find its lagged productivity ωiei−1, draw ε0it from G0

ε , and simulate its counterfactual
untreated future productivity by h̄(`)

0 . The ATT is simply the average of difference between
the realized productivity and the simulated untreated productivity for treated firms.
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4.2 ATT: Non-absorbing Treatment

In some scenarios, the treatment is non-absorbing by nature. In reality, firms participate
in import, export, or R&D activities occasionally.9 We now discuss the identification of ef-
fects of non-absorbing treatment. Since treatment can be volatile, the individual treatment
effect can be influenced by a sequence of past treatment status10.

We specify a general Markov process for the potential productivity process that con-
siders the switching back behavior:

ω1
it = 1(Git = 0)h̄1(ω1

it−1) + 1(Git = 1)h+
1 (ω0

it−1, ω
1
it−1) + 1(Git = −1)h−1 (ω0

it−1, ω
1
it−1) + ε1it,

ω0
it = 1(Git = 0)h̄0(ω0

it−1) + 1(Git = 1)h+
0 (ω0

it−1, ω
1
it−1) + 1(Git = −1)h−0 (ω0

it−1, ω
1
it−1) + ε0it.

(20)

Compared to (3), (20) allows the firms to turn on and off the treatment across time and
allows much more flexible transition dynamics when firms change their treatment status.
Since the identification of production function and realized productivity does not rely
on the Git 6= 0 period, Theorem 3.1 still holds. The key difference is the definition of
treatment effect and its identification.

Many dynamic treatment effects are not identified under the volatile treatment con-
text. Instead, we focus on some treatment effect of firms that switch its treatment sta-
tus at time g and maintain the status for `-period. Here we abuse the notation to use g
to both denote the treatment cohort group and the group’s initial treatment time. For-
mally, we consider two types of ATTs for the `-period persistent treatment for a time
g-positive/negative treatment switcher:

ATT+
g,` = E[ω1

ig+` − ω0
ig+`|Dig−1 = 0, Dig = ... = Dig+` = 1]

ATT−g,` = E[ω1
ig+` − ω0

ig+`|Dig−1 = 1, Dig = ... = Dig+` = 0]
(21)

Here the group is defined by the time when a firm switches its treatment status. We first
show that the 0-period ahead treatment effect is identified under the conditional parallel
trend assumption for both negative and positive switcher.

Proposition 4.4. Under Assumption 4.2, the 0-period-ahead positive/negative switching ATT

9In the data on Taiwanese electronics industry employed by Aw et al. (2011), the annual transition prob-
ability from only R&D performer in year t to R&D performer in year t+1 is around 0.57, and the probability
from only exporter in year t to exporter in year t+1 is around 0.78. In the Spanish data used by Doraszelski
and Jaumandreu (2013), slightly more than 20% of firms are occasional performers that undertake R&D
activities in some (but not all) years.

10See Heckman and Navarro (2007) for formal definition of the general dynamic treatment effects.
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effects at time g are identified as ATT+
g,0 = E[ωig − h̄0(ωig−1)|Dig−1 = 0, Dig = 1], and ATT−g,0 =

E[ωig − h̄1(ωig−1)|Dig−1 = 1, Dig = 0].

Proof. We prove the result for the positive switching effectATT+
g,0, and the negative switch-

ing ATT follows similarly. Note that for regime change indicator Gig = 1,

ATT+
g,0 =(a) E[ω1

ig − ω0
ig|Dig−1 = 0, Dig = 1]

=(b) E[ω1
ig|Dig−1 = 0, Dig = 1]− E[h̄0(ω0

ig−1)|Dig−1 = 0, Dig = 1]

=(c) E[ωig|Dig−1 = 0, Dig = 1]− E[h̄0(ωig−1)|Dig−1 = 0, Dig = 1],

where (a) by definition, (b) follows by Assumptions 3.2 and 4.2, (c) follows by the poten-
tial outcome (2).

Similar to the absorbing-treatment case, evaluating the `-period-ahead ATT requires
additional structural assumption on the exogeneity of shocks.

Assumption 4.5. There is a cohort group g′ such that all firms i′ such that i′ ∈ g′ are un-
treated by l-periods since time g′, i.e. Dig′−1 = Dig′ = ... = Dig′+l = 0. Moreover, the con-
ditional distribution of (ε0ig, ..., ε

0
ig+l)|(i ∈ g, ω0

ig−1) is the same as the conditional distribution of
(ε0i′g′ , ..., ε

0
i′g′+l)|(i′ ∈ g′, ω0

ig′−1).

Assumption 4.5 generalizes Assumption 4.3 to the non-absorbing treatment case using
firms that are not treated between g′ and g′+l. Since treatment is not absorbing, we further
need to condition on the lagged treatment Dit−1.

Proposition 4.5. Suppose Assumption 4.2 and 4.5 hold. The ATT+
g,l is identified by the same

expression as the ATTg,l in Proposition 4.2.

The proof of Proposition 4.5 is the same as the proof of Proposition 4.2 and is hence
omitted here. Assumption 4.5 has a similar restriction as Assumption 4.3. However,
if firms are allowed to change the treatment status every period, then the g′-matching
cohort is very hard to find: The l-period untreated firms are likely to face a very high ε0ig′ ,
and hence these firms are not good match for the g-cohort firms.

However, Assumption 4.5 is likely to hold for treatment that must be maintained for
several periods: For example, the treatment decision is whether to use a new technology,
and the new technology is not available before time g. At time g, firms can decide whether
to take the new technology, and the contract for adopting the new technology must last
for at least l period. In this case, we can use all firms at g′ = 0 as the match group.
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5 Discussion of the Potential Productivity Process (3)

Our embedding of the potential outcome into the productivity Markov process is new to
the literature, and a structural modeling of the realized productivity ωit cannot achieve
this goal. In this section, we use the absorbing case to illustrate the difference between
potential and realized productivity process.

If we were to model the evolution process of the realized productivity, and wanted to
incorporate the transition period, we could consider:

ωit = h0(ωit−1)1(Dit−1 = Dit = 0) + h1(ωit−1)1(Dit−1 = Dit = 1) + h+(ωit−1)1(Dit−1 = 0, Dit = 1) + εit

(22)

This modeling of the realized productivity is appealing since it results in the same mo-
ment conditions (8), (9) for estimating the production functions. Indeed, when we con-
sider the potential productivity process, we only use the policy-consistent period to esti-
mate the production, leaving the transition period out. However, the evolution process
for the realized productivity (22) differs from the potential productivity process (3) in
several ways: The Markovian Assumption and the causal effect interpretation.

Markovian Assumption Difference The realized productivity under (22) is a controlled
Markov process. The transition probability only depends on the values of ωit−1, Dit−1

and Dit, but not the time t. However, the realized productivity under the potential
productivity process can be non-Markovian. To illustrate this, we consider Example 3.
Suppose there are two firms i and i′ that take transition at period t and t′ respectively,
and ωit = ωi′t′ . Since treatment are absorbing, we also know Dit−1 = Di′t′−1 = 0 and
Dit = Di′t′ = 1. If we model the realized productivity with the Markov process (22), the
distribution of ωit and ωi′t′ should be the same. In comparison, if we consider the potential
productivity process, we have

E[ωit|ωit−1, Dit, Dit−1] = E[h+(ωit−1, ω
0
it−1)|ωit−1, Dit, Dit−1].

E[ωi′t′|ωi′t′−1, Di′t′ , Di′t′−1] = E[h+(ωi′t′−1, ω
0
i′t′−1)|ωi′t′−1, Di′t′ , Di′t′−1].

The above two quantities are generally different. The non-Markovian property of the
realized productivity is substantial in some empirical context. Consider a country that
decides between giving a treatment to firms at period t and t′ respective. The treatment
time can have significant influence on the potential productivity: In general ω1

it and ω1
it′

have different distribution.
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Causal Interpretation Difference The control Markov process (22) does not directly
give an interpretation of the treatment effect in terms of the potential outcome frame-
work. However, we can put (22) under the divergence of productivity, i.e. Example 2.
Note that under the controlled Markov process (22), we can identify h+ by the following
moment condition:

E[ωit(β)− h+(ωit−1(β))|Zit, Dit = 1, Dit−1 = 0] = 0.

Along with the conditional parallel trend Assumption 4.2, we can derive the instanta-
neous conditional average treatment effect as:

E[ω1
it − ω0

it|ωit−1] = h+(ωit−1)− h̄0(ωit−1). (23)

This is an appealing result since the treatment effect is identified even if the treatment
decision Dit is dependent on ωit−1. Recall that with the potential productivity process (3),
we are only able to identify the average treatment effect on the treated. Such a difference
comes from the causal interpretation of the treatment decision: The potential productivity
process (3) allows firms’ decision to depend on some additional unobserved potential
productivity, while (22) essentially assumes that the two potential productivity coincides
and there is no unobserved variables in the decision. We discuss the identification of
average treatment effect under the specification of Example 2 in Appendix A.2.

6 Empirical Study

6.1 Background

The rise of technologies such as artificial intelligence, robotics, cloud computing, and big
data analytics has ushered in a new era of digitalization in firms’ production activities.
This transformation has sparked significant interests among researchers and policymak-
ers due to its strong implications for productivity growth. In this section, using a firm-
level dataset from China, we employ our proposed method to investigate the impact of
manufacturing firms’ production digitalization on productivity growth.

Production digitalization refers to the integration of utilization of advanced digital
technologies and tools throughout the entire production process. For a long time, China’s
manufacturing is concentrated on making low-ended goods, with an intensive usage of
labor. In such background, in addition to industrial policy, Chinese government has been
intensively investing in infrastructure in information and communication technologies.
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In 2015, China issued the Made in China 2025 as a national development plan and a com-
prehensive set of industrial policy to further develop China’s manufacturing sector. With
all these efforts, Chinese manufacturing firms have been actively investing in digital tech-
nologies to upgrade their production processes. Our data covers the period in which
many Chinese firms started to adopt digital transformation as an important development
strategy. The popularity and policy legitimacy of the digitalization strategy ensures that
firms would record their digitalization strategy in their annual reports in explaining their
operations to shareholders.

6.2 Data

The empirical study combines two datasets. The first dataset is on publicly traded man-
ufacturing firms in China stock market between 2005 and 2019. This dataset is collected
by CSMAR (equivalent to Compustat in the US) and contains rich information on firms’
production activities. The second dataset is the annual reports for China’s A-shares man-
ufacturing firms downloaded from websites of Shanghai Stock Exchange, Shenzhen Stock
Exchange, and CNINF11 between 2005 and 2019. We use the texts in the annual reports to
construct the variable of production digitalization. Our data covers the period in which
many Chinese firms started to adopt production digitalization as an important develop-
ment strategy.

We construct the measure of production digitalization by combining text analysis tools
with manual reading of the annual reports of listed manufacturing firms. Based on a set of
digitalization related technologies (e.g., big data analytics, artificial intelligence, internet
of things (IoT), cloud computing, and robotics), we first extract the digitalization-related
keywords and manually read the texts around the keywords in each annual report. Fol-
lowing Zhai et al. (2022), we hired two research assistants independently to manually
read the extracted texts to determine whether the firm undertakes production digitaliza-
tion in each year. In particular, as an improvement of existing method, we have excluded
scenarios in which the firm only describes the development of digitalization as a trend in
its own industry or as an introduction of the national development strategy. The detailed
procedures and several concrete examples of texts on the identified production digital-
ization are presented in Appendix B. For the empirical purposed, we define a dummy
variable Digitit to capture the status of production digitalization of firm i in year t. The
variable Digitit takes the value of one for years after year t if firm i’s initial year of pro-

11CNINF (http://www.cninfo.com.cn/new/index) is a large-scale professional website of securi-
ties in China to fully disclose the announcement information and market data of more than 2500 listed
companies in Shenzhen and Shanghai.
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duction digitalization is identified as year t. Otherwise, Digitit is equal to zero. Note
that by the construction of Digitit, the treatment is absorbing, fitting the context of our
econometric framework.

Figure 2 shows the strong growing trend of production digitalization within the sam-
ple period. The number of firms that have adopted production digitalization was zero
before 2011, but increased rapidly to be 408 in 2018. This is consistent with the rapid
development of digital economy and the building of infrastructure for information tech-
nologies in China during this period. Note that there has been an increase in the number
of non-digitalized firms. This is because more and more manufacturing firms had be-
come listed firms during the sample period, while the firm exits is relatively rare. The
growing trend of production digitalization in our sample provides us a suitable empiri-
cal background to employ our proposed method to investigate the productivity effects of
production digitalization.

Figure 2: Trend of Production Digitalization
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To account for industrial heterogeneity and keep an enough number of observations
in each industry, we classify firms according to the first digit of the industry code. The
estimation sample has 14,438 observations (13,171 untreated and 1,267 treated), covering
seven main manufacturing industries. We provide the summary statistics in Appendix B.
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6.3 Estimation Procedure

6.3.1 Production Function Estimation

We employ the Ackerberg et al. (2015) method to estimate a value-added production func-
tion, with the extension of potential productivity process (3). We use the translog specifi-
cation as the benchmark model:

yit = βtt+ βllit + βkkit + βlll
2
it + βkkk

2
it + βlkkitlit + ωit + εit (24)

where yit, lit, kit are the logged value added, logged number of employees, and logged
capital, respectively. βtt captures the exogenous trend in the production function, and
εit is the exogenous idiosyncratic output shocks. In light of our econometric framework,
the realized productivity ωit can be expressed as ωit = Digitit × ω1

it + (1 − Digitit)ω
0
it,

where Digitit ∈ {0, 1} is the defined indicator for production digitalization. We specify
the following dynamic equation for the productivity process for non-switching periods12:

ωdit = ρd0 + ρd1ω
d
it−1 + ρd2(ωdit−1)2 + ρd3(ωdit−1)3 + ξdit, d ∈ {0, 1}, (25)

where d = 1 indicates the treated firms that have adopted production digitalization in the
sample period, and d = 0 represents the control firms that have never started production
digitalization.

Since the productivity process in the switching period is not well characterized by
the above specification, we drop the switching period when estimating the production
function.13 As guided by Theorem 3.1, we construct moment conditions by using instru-
ments following Ackerberg et al. (2015). To account for the industrial heterogeneity in
production technologies, we estimate the production functions and productivity evolu-
tion processes separately for each industry. After the estimation of production function,
we compute the productivity and recover the productivity evolution process.

6.3.2 Estimation of the Effects of Production Digitalization on Productivity

Based on the productivity estimates and the recovered productivity process, we use the
proposed simulation-based approach to estimate the firm-specific treatment effects by
constructing multiple counterfactual productivity paths for each firm. To simulate coun-
terfactual productivity paths for treated units, we draw productivity shocks ξ0

it from the

12The switching period is defined as the initial period in which the firm starts production digitalization
13An alternative way is to add a dummy variable indicating the transition period. Our results stay stable

if we use this alternative specification.
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untreated observations before the year of 2011 when almost no firms was digitalized.
Inspired by the identification of CATT and the simulation based method in Proposi-

tion 4.3, we propose to study the following firm-specific `-period treatment effect TTi` ≡
ωiei+l − EG0

ε
[h̄

(l)
0 (ωiei−1, ε

0
ei
, ..., ε0ei+l)]. This firm-specific object allow us to study the hetero-

geneity of treatment effect across firms that is missed in the ATT statistics. Moreover, the
TTi` is easier to calculate than the CATT, which requires taking averages of TTi` across
firms that has the same lagged productivity. Specifically, for firm i that started produc-
tion digitalization in year ei, we estimate the firm-specific `-period treatment effects of
production digitalization as:

T̂ T i` = ω̂iei+` −
1

M

M∑
m=1

ω̂0
iei+`

(m), (26)

where ω̂0
iei+`

(m) is the unrealized potential productivity obtained through the simulated
productivity path m, and M is the total number of counterfactual productivity paths. In
our estimation, we set M to be 100. After experimentation, We notice that the TT estimate
is sensitive to the outliers in the distribution of potential productivity shocks ξ0

it. To deal
with this problem, instead of drawing from the non-parametric distribution of produc-
tivity shocks, we exclude the outliers of productivity shocks by discarding values smaller
than 1st percentile or greater than 99th percentile and parameterize the distribution of
productivity shocks to be a normal distribution ξ0

it ∼ N (0, σ2
ξ ). The stand deviation σξ is

estimated as the sample analog.
Based on the estimated firm-specific treatment effects, we then compute group-specific

treatment effects. We consider two types of group-specific treatment effects: the first is the
dynamic treatment effects, which are obtained by averaging T̂ T i` by period `; the second
is the industrial treatment effects, which are computed by averaging T̂ T i` by industries.

Due to the concern for overly small sample size, we set ` to be 0 to 4. We use the
block-bootstrap to construct the confidence interval for the group-level ATT estimates. In
particular, we resample observations for each industry by firm-level clusters and repeat
the two-step estimation procedure. Considering that different industries have distinct
level of production digitalization, we bootstrap the sample by industry-level strata of
treated firms and untreated firms.
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6.4 Empirical Results

6.4.1 Group-specific Average Treatment Effects

Dynamic Average Treatment Effects We first report the estimation results of dynamic
treatment effects in Table 1.14 We find positive effects of production digitalization on pro-
ductivity in from period 0 to period 2, but slightly negative treatment effects on produc-
tivity in periods 3 and 4. In aggregation, the average effects of production digitalization
on productivity is around 0.035. Notably, none of the estimates are statistically significant
at the 10% significance level, which means that on average production digitalization has
not caused significant productivity growth among these Chinese manufacturing firms.
The large standard error suggests that there is a substantial variation in the treatment ef-
fects of production digitalization on productivity. This motivates to dig into firm-level
treatment effects of production digitalization on the productivity.

Table 1: Treatment Effects of on Productivity

Periods After Digitalization ATT SE Treated Obs.
0 0.069 0.490 330
1 0.028 0.653 219
2 0.036 0.723 140
3 -0.040 0.706 94
4 -0.007 0.817 59

Total 0.035 0.628 842

Note: The production function is specified as translogged production functions. For
each firm, 100 counterfactual productivity paths are simulated. Standard errors are
obtained by bootstrapping 500 times.

Industrial Average Treatment Effects Table 2 reports the industry-level treatment effect
and its contribution to the overall treatment effect in the sample. We obtain the overall
treatment effect of production digitalization by averaging over all observations. Note that
we do not report the dynamic treatment effect for each industry due to the small sample
size. The industry of equipment manufacturing (ÂTT=0.062) and electronics manufac-
turing (ÂTT=0.193) have the highest ATT of productivity, contributing around 36.9% and
106.2% to the sample’s overall ATT, respectively. In contrast, the chemical synthesis in-
dustry show the lowest ATT of productivity (ÂTT=-0.157), accounting for -43.4% of the
sample’s overall ATT. The industrial heterogeneity reflects that firms obtain different pro-
ductivity gains from adopting production digitalization. The finding that production dig-

14The estimated parameters for the translog production function are reported in Appendix B.3.

31



italization tends to have larger positive productivity effects on manufacturing industries
like equipment, electronics, and healthcare may be due to their intricate processes and
high technological intensity. The integration of digital technologies into these processes
can lead to substantial efficiency gains, precision improvements, and customization op-
portunities. In contrast, industries like print & paper and food & beverage might have
comparatively simpler operations that may not benefit as significantly from digitaliza-
tion.

Table 2: Industry-level Treatment Effects on Productivity

Industries Mean SE Contribution Treated Obs.
Equipment Manufacturing 0.062 0.677 106.2% 508
Electronics Manufacturing 0.193 0.422 36.9% 57
Healthcare Manufacturing 0.063 0.363 10.2% 48
Print & Paper 0.023 0.429 2.7% 35
Food & Beverage -0.004 0.531 -0.6% 53
Metal Processing -0.061 0.520 -12.1% 59
Chemical Synthesis -0.157 0.710 -43.4% 82
Total 0.035 0.628 100% 842

Note: The contribution of each industry is calculated as the ratio of sample-share-
weighted treatment effects to the average treatment effects in the whole sample.

Comparison with Ex-post Regressions To emphasize the difference between our method
and the existing method, we also estimate the treatment effects on productivity using the
ex-post regression method. We estimate the following two-way fixed effects model:

ω̂it = δDigitit + ρ1ω̂it−1 + ρ2ω̂
2
it−1 + ρ3ω̂

3
it−1 + λi + λt + uit (27)

where ω̂it is the productivity estimate for firm i in year t, and Digitit is the dummy vari-
able indicating production digitalization.λi and λt represent the firm and year fixed ef-
fects, respectively. The error term is uit. The parameter δ is usually interpreted as the
treatment effects of production digitalization on productivity (e.g., Liu and Mao, 2019).

We follow the estimation strategy of ex-post method to estimate the productivity and
run the regression as specified in equation (27). The results are presented in Table 3. We
experiment with three ways of estimating the production function and productivity. The
first productivity process we specify is an exogenous productivity process without includ-
ing the information on digitalization. In the other two productivity processes, we specify
an endogenous productivity process and estimate the production function either using
the entire sample or excluding the transition period. The estimated coefficient of Digitit
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in equation (27) is robustly negative and significant in various specifications (see Table
3). In our empirical context, if the researcher interpret the estimated coefficient to be the
productivity impacts of production digitalization, she would conclude that productivity
digitalization has led to productivity declines in the sample period. As we have illus-
trated, it is not a surprise that the logical inconsistency underlying the ex-post method
can lead to misleading empirical results.

Table 3: Productivity Effects Estimation Results Using Alternative Methods

Dependent var.: ω̂a
it Dependent var.: ω̂b

it Dependent var.:ω̂c
it

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Digitit -0.146∗∗∗ -0.102∗∗∗ -0.103∗∗∗ -0.150∗∗∗ -0.104∗∗∗ -0.104∗∗∗ -0.164∗∗∗ -0.130∗∗∗ -0.134∗∗∗

(0.034) (0.031) (0.031) (0.034) (0.031) (0.031) (0.037) (0.041) (0.041)
ω̂it−1 0.434∗∗∗ 1.286∗∗∗ 0.437∗∗∗ 1.286∗∗∗ 0.437∗∗∗ 1.112∗∗∗

(0.009) (0.130) (0.009) (0.128) (0.010) (0.114)
ω̂2
it−1 -0.042∗∗∗ -0.042∗∗∗ -0.034∗∗∗

(0.006) (0.006) (0.006)
ω̂3
it−1 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000)
N 11584 11584 11584 11584 11584 11584 11252 10974 10974
R2 0.996 0.997 0.997 0.996 0.997 0.997 0.996 0.997 0.997

Note: ω̂a
it is estimated using an exogenous productivity process, ω̂b

it is estimated using an endogenous
productivity process incorporating the digitalization variable for the whole sample, and ω̂c

it is obtained
through estimating the endogenous process but dropping the switching period. All regressions include
firm and year fixed effects. Standard errors are in parentheses. ∗∗∗ p < 0.01.

6.4.2 Firm-specific Treatment Effects

In Figure 3, we display the kernel density of the firm-specific treatment effects in dif-
ferent periods after production digitalization. The large variation in productivity gains
may reflect the differences in firms’ organization efficiency to build the new digital pro-
duction technology and the learning ability to harness the new digital technology in the
production process.

It is clear that the density of firm-specific treatment effects (T̂ T i`) shifts towards left
from period 0 (` = 0) to period 4 after digitalization. This indicates that production dig-
italization tends to generate lower productivity gains as time goes by. We also observe a
larger dispersion in the firm-specific treatment effects in later periods than earlier periods,
indicating that the productivity effects of digitalization become more distinct across firms.
The is consistent with the observation that the success rate of digital transformation is low
(Bughin et al., 2019), and also largely supports the theory that firms may encounter or-
ganizational or technological barriers in the process of upgrading their business practices
and the skills of the workforce in order to fully harness the new technology (Taylor and
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Helfat, 2009; Feigenbaum and Gross, 2021). However, as production digitalization has
large negative productivity effects for a non-negligible portion of firms, the arithmetic
mean of digitalization on productivity remains to be negative in later periods.

Figure 3: Firm-specific Treatment Effects of Production Digitalization on Productivity
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Note: This figure shows the probability density of firm-specific treatment
effects of digitalization on productivity. Firm-specific treatment effects
on productivity is obtained by simulating 100 counterfactual productivity
paths for each treated observation.

Next we examine the average treatment effects for different levels of productivity prior
to production digitalization. To this end, we construct 5 productivity bins by splitting
the productivity evenly into 5 groups based on the percentiles of the productivity. As
time evolves, the productivity growth caused by production digitalization of the low-
productivity firms changes from positive to negative. In contrast, in all periods, the pro-
ductivity gains for high-productivity firms tend to be larger than low-productivity firms.

We further examine the statistical significance for the positive correlation between ini-
tial productivity ω̂0

iei−1 and firm-specific treatment effects on productivity T̂ T i`. In the
regression of T̂ T i` against ω̂0

iei−1, we control industry and year fixed effects to account for
the industry- and year-specific factors that may affect the impact of production digitaliza-
tion on productivity (see Table 4). Except for period 0, the regression coefficients of ω̂0

iei−1

are positive. In particular, the regression coefficient are statistically significant for periods
2, 3, and 4.

The fact that more productive firms are likely to receive more productivity gains than
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less productive firms implies that the application of digital technologies in the production
process leads to a higher dispersion of the productivity. As productivity is essentially a
residual in the production function, it may represent many factors that may affect the
output conditional on quantities of capital and labor input. For example, productivity
may be positively correlated with a larger stock of intangible assets including human
capital (Bowlus and Robinson, 2012) and/or innovation capital (Hall et al., 2010), as well
as managerial practices (Bloom et al., 2016). From this perspective, our results echo with
a series of findings that the productivity of firms with better management practices grow
more rapidly during the episode of information technology (IT) investment in the US
(Bloom et al., 2012), so does firms with intangible assets that are complementary to the IT
(Bresnahan et al., 2002).

Figure 4: Bins of Initial Productivity and the Impact of Digitalization on Productivity
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Note: the horizontal axis indicates the bins of initial productivity, a smaller number of bins indi-
cate lower productivity. The initial productivity is normalized by subtracting the industry-level
average productivity to facilitate the cross-industry comparison.
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Table 4: Initial Productivity and Firm-specific Treatment Effects on Productivity

(1) (2) (3) (4) (5)
T̂ T i0 T̂ T i1 T̂ T i2 T̂ T i3 T̂ T i4

ω̂0
iei−1 -0.012 0.021 0.191∗∗ 0.192∗∗∗ 0.203∗

(0.035) (0.060) (0.086) (0.070) (0.114)
N 330 219 140 94 59
R2 0.111 0.114 0.185 0.284 0.283

Note: All regressions include industry- and year- fixed effects. Standard errors are in
parentheses. ∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

7 Conclusion

In this paper, we studied the identification and estimation of treatment effects on pro-
ductivity. We generalize the standard firm-level investment model by incorporating a
binary treatment which affects the productivity evolution and/or production functions.
The treatment reflects either the change in the macro environment or individual action.
The treatment effects of productivity is the difference between the realized productivity
and the potential outcome of productivity. As the productivity is unobservable to the
econometrician, the detection the treatment effects on productivity requires recovering
the productivity and its evolution rule. We examine the underlying assumptions that
lead to the identification of treatment effects on the structurally estimated productivity.
Taking advantage of the Markovian productivity process, we propose a new approach for
estimating the full dynamic treatment effects on productivity.

As an empirical application, we have investigated the impact of production digitaliza-
tion on productivity by using a sample of Chinese manufacturing firms. We find positive
but not significant average treatment effects of production digitalization on productivity.
The effects of digitalization on productivity differs substantially across firms, periods, and
industries. Specifically, firms with higher ex-ante productivity tend to receive relatively
higher productivity gains as time moves on. In general, our findings support the view
that new digital technologies have unequal impact on firms’ productivity. In sharp con-
trast, using the traditional two-step method leads to the finding of negative productivity
effects of production digitalization.
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Appendices

A Connection to the Dynamic Treatment Effect

A.1 The No-Anticipation and Sequential Randomization Condition

We now briefly connect our method to the dynamic treatment effect literature (Abbring
and Heckman, 2007). There are two key conditions in the dynamic treatment effect liter-
ature: No-anticipation condition (NA) and the Sequential randomization condition (SR).
Since our framework combines both the potential outcome model and the structural equa-
tion model, we can use the structural model to verify whether NA and SR conditions hold
or not. Following the notation in Abbring and Heckman (2007), we letDt

i = (Di1, ..., Dit),
and ωdti = (ωdi1, ..., ω

d
it) for d = 0, 1. We state the NA condition in our framework.

Assumption A.1. (NA) Let DT
i and D̃T

i be two treatment sequence such that Dt
i = D̃t

i for any
t ≤ T . The no-anticipation condition holds if the potential (ω0

it, ω
1
it) generated underDT

i coincides
with the potential (ω̃0

it, ω̃
1
it) generated under D̃T

i for all t ≤ T .

The no-anticipation condition says that if two sequences of treatment coincides up to
time t, then the potential productivity up to time t should also coincide. No-anticipation
is the crucial assumption for analysis of dynamic treatment effect (Sun and Abraham,
2021).

Given the Markovian evolution process (3), NA Assumption A.1 holds as long as there
is no anticipation in the productivity shocks: The shock sequence (ε0is, ε

1
is)s≤t under Dt

i

coincides with the shock sequence (ε̃0is, ε̃
1
is)s≤t under D̃t

i . We view Assumption A.1 as a
weak requirement since the shocks to productivity process are usually assumed to be
unexpected by firms in the productivity estimation literature.

Another condition is the sequential randomization condition (Robins, 1997; Gill and
Robins, 2001; Lok, 2008), which says that future potential outcomes are conditional inde-
pendent of the current treatment status. Sequential randomization is crucial to the iden-
tification of average treatment effects. We state the firm’s SR condition in our framework.

Assumption A.2. (SR-F) Dit+1 ⊥ (ω1
is, ω

0
is)s≥t|IFit holds for all t.

We call Assumption A.2 the sequential randomization condition for firms since we
condition on the firms’ information set. This is slightly different from the traditional
sequential randomization condition in Gill and Robins (2001), where they conditional on
the econometrician’s information set.
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Our structural model implies that Assumption A.2 holds when Dit+1 given the firm’s
information set IFit . Indeed, from the firm’s dynamic optimization behavior, we know
Dit+1 is a function of IFit , denoted by Dit+1 = g(IFit ). Then given the information set
IFit , Dit+1 is a degenerative variable and thus Assumption A.2 holds. When the treatment
variable is externally imposed, and the assigner randomizes the treatment up to the firm’s
knowledge, i.e. Dit+1 = g̃(IFit , ηit) for some ηit independent of (ω1

is, ω
0
is)s≥t, then SR-F also

holds.
Now, suppose the treatment is absorbing, and the firms can only choose the treatment

status Die at time e. Under the Assumption A.2, define the propensity score as κ(IFit−1) ≡
E[Dit|IFit−1]. Then we can rewrite the average treatment effect as:

E[ω1
ie − ω0

ie] = E
[
ωitDie

κ(IFie−1)
− ωie(1−Die)

1− κ(IFie−1)

]
. (A.1)

In general, when the sequential randomization fails, the average treatment effect is not
identified without further restrictions, see Abbring and Heckman (2007) for discussion.

A.2 Identify the Average Treatment Effect

When we write down the average treatment effect equation (A.1), we use the firms’ infor-
mation set IFie−1. Many variables in IFie−1, such as (ω1

ie−1, ω
0
ie−1) and ζie−1 are not available

to the econometrician, and (A.1) does not identify the ATE. Instead, the econometrician
has access to the information set IEie−1, see Definition 4. To identify the ATE under the
absorbing treatment context, we require a sequential randomization condition for the
econometrician:

Assumption A.3. (SR-E) Dit ⊥ (ω1
is, ω

0
is)s≥t|IEit holds for t = e.

In general, we have IFie−1\IEie−1 = {(ω1
is, ζis)s≤e−1}. If Die is dependent of ω1

ie−1, then
Assumption A.3 fails because ω1

ie−1 is dependent of ω1
ie. However, there are special cases

where we can still use the econometrician’s information set to identify the ATE.

Proposition A.1. Suppose the potential productivity process satisfies Example 2, i.e. ω1
is = ω0

is

for s ≤ e − 1. Moreover, the cost shock ζie−1 is independent of the evolution shocks (ε1is, ε
0
is)s≥e

conditional on the econometrician’s information set IEie−1. Then, we can identify the `-period-ahead
average treatment effect as

E[ω1
ie+l − ω0

ie+l] = E
[
ωie+lDie

κ(IEie−1)
− ωie+l(1−Die)

1− κ(IEie−1)

]
. (A.2)
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Proof. If ω1
is = ω0

is for s ≤ e−1, then firms’ treatment decisions satisfy Die = g(IEie−1, ζie−1).
By the potential productivity process (3), ω1

ie+l = h̄
(l)
1 (h+(ωie−1) + ε0ie, ε

1
ie+1, ..., ε

1
ie+l), and

(3), ω0
ie+l = h̄

(l+1)
0 (ωie−1, ε

0
ie, ε

0
ie+1, ..., ε

0
ie+l), where the h̄(l)

d is the l-times composited evolu-
tion process of h̄d. Then conditional on the econometrician’s information set IEie−1, the
variation of Die is caused by ζie−1, the variation of (ω1

ie+l, ω
0
ie+l) is caused by (ε1is, ε

0
is)s≥e. By

assumption, they are independent. Therefore, Assumption A.3 is satisfied, and equation
(A.2) follows by the propensity score matching method.

When ` = 0, it can be shown that (A.2) is the same as (23). However, when ` > 0, we
cannot directly calculate the ATE from the identified h̄1 and h+. This interpretation of the
treatment effect is also different from the endogenous productivity method.

Even if the productivity process in Example 2 is the same as that in Doraszelski and
Jaumandreu (2013), we note that the identified average treatment effect (A.2) is neither
E[h+(ωie−1) − h̄0(ωie−1)] nor E[h̄1(ωie−1) − h̄0(ωie−1)], which are usually interpreted as
treatment-related effect in the fully structural models. As we note, the quantity h+(·) −
h0(·) reflects the trend difference, but it fails to account the selection bias when treatment
Dit is not exogenous.

B Data Appendix

B.1 Construction of Other Variables

We construct the main variables for production function estimation as follows.
Materials: Costs of goods sold plus selling, general and administrative expenses minus

labor costs. Labor costs are measured using the payroll payable, and deflated using the
industry-year level input price index.

Capital: Fixed assets including property, plant, and equipment (PP&E) deflated by
province-year level investment price index.

Labor: Total number of registered working employees reported in the annual report.
Value Added: Operational revenue minus materials, deflated by province-year level

output price index.
Annual Sales: Total operational revenue, deflated province-year level output price in-

dex.
All the price indices are extracted from China’s Statistical Yearbook. The summary

statistics of these variables are displayed in the following table.
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Table B.1: Summary Statistics of Main Production Variables

Variable Mean SD P5 P25 P50 P75 P95
ln(m) 21.095 1.263 19.209 20.193 21.001 21.875 23.418
ln(l) 7.675 1.024 6.073 6.945 7.620 8.359 9.444
ln(k) 20.007 1.265 18.034 19.135 19.907 20.800 22.290
ln(y) 18.895 1.260 16.893 18.055 18.831 19.708 21.130
ln(sale) 21.141 1.222 19.327 20.272 21.041 21.898 23.405

The industrial classification is based on the two-digit China’s National Industrial Clas-
sification. We choose the manufacturing industries and perform the estimation by 2-digit
industry. We drop some industries that contain too few observations to conduct mean-
ingful analysis or contain too few treated observations. The final sample of industries and
number of observations for treated and control groups are listed in Table B.2.

Table B.2: Number of Treated and Untreated Observations for Different Industries

Industries Untreated Treated Total
Print & Paper 438 50 488
Food & Beverage 890 74 964
Electronics Manufacturing 1,431 87 1,518
Healthcare Manufacturing 1,627 85 1,712
Metal Processing 1,925 79 2,004
Chemical Synthesis 2,525 130 2,655
Equipment Manufacturing 4,335 762 5,097
Total 13,171 1,267 14,438

Note: The Electronics Manufacturing industry encompasses the production of vari-
ous electronic equipment, including the manufacturing of other electronic equipment,
daily-use electronic appliances, and electronic components. The Equipment Manu-
facturing industry involves the production of specialized equipment, transportation
equipment, instrumentation, cultural and office machinery, general machinery, and
electrical machinery and equipment. The Healthcare Manufacturing industry special-
izes in the production of pharmaceuticals and biotechnology products. The Print &
Paper industry covers activities such as printing, manufacturing of cultural, educa-
tional, and sports goods, as well as paper and paper product manufacturing. The
Food & Beverage industry focuses on food manufacturing, food processing, and bev-
erage manufacturing. The Metal Processing industry encompasses various activities,
including nonferrous metal smelting and rolling, metal product manufacturing, non-
metallic mineral product manufacturing, and ferrous metal smelting and rolling. The
Chemical Synthesis industry includes the manufacturing of chemical raw materials
and chemical products, chemical fiber, plastics, petroleum processing and coking, and
rubber products.
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B.2 Defining Production Digitalization

The text analysis of annual reports contains two main steps: keyword searching and re-
fining.

Step 1: Keywords Searching To capture state-of-art digital technologies involved in
production digitalization, we choose the following keywords (Chinese bopomofo in brack-
ets): digitalization (Shu Zi Hua), smartness (Zhi Neng), intelligence (Zhi Hui), Internet of Things
(Wu Lian Wang or IoT), industrial internet (Gong Ye Wu Lian Wang), big data (Da Shu Ju), cloud
computing (Yun Ji Suan), industrial cloud (Gong Ye Yun), platform (Ping Tai), SaaS, C2M and
various management information systems (such as PDM, ERP, SRM, CRM, MES, SCADA, PLM
and their Corresponding Chinese names). Among these words, “Smart” (Zhi Neng), “Intelli-
gent” (Zhi Hui), and “Platform” (Ping Tai). These keywords appear in annual reports in various
forms, such as “Smart Manufacturing” (Zhi Neng Zhi Zao), “Smart Factory” (Zhi Hui Gong
Chang), “Smart Production” (Zhi Neng Zhi Zao), “Smart Firms” (Zhi Hui Xing Qi Ye), “Cloud
Platform” (Yun Ping Tai), and “Digital Purchasing Platform” (Dian Zi Cai Gou Ping Tai), etc.
To avoid missing useful information on digitalization, we only use the stem words “Zhi
Neng”, “Zhi Hui”, and “Platform” to identify digitalization-related texts.

Step 2: Manual Reading and Refining By manual reading of the annual reports, any
paragraphs on digitalization that are related to production, manufacturing and equip-
ment or workshop upgrade are classified as production digitalization. However, we no-
tice that in some annual reports, firms may describe the developing of digitalization in its
own sector or China’s national strategy, which is not related to the firm’s own implemen-
tation of digitalization. In our construction of the digitalization indicator, we exclude such
scenarios by manually identify them and exclude them from the firm’s own digitalization
strategy. We list three examples below:15

• Example 1 (Stock ID: 000008, Year: 2018) “Driven by the trend of technological
progress, rail transit operation and maintenance equipment has been upgraded from in-
formatization to digitalization characterized by intelligence, data, internet and deep learn-
ing. Traditional equipment is upgrading to intelligent equipment; operation and
maintenance system is upgrading from single-product intelligence to unmanned
maintenance factory. It is the right time for data-oriented development of equip-
ment in rail transit industry.”

15The English texts are translated from Chinese texts in firms’ annual reports.
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• Example 2 (Stock ID: 300161, Year: 2017): “Made in China 2025 puts forward the
strategic goal of achieving manufacturing power through ‘three steps’. Centering on
the top-level design of Made in China 2025, relevant supporting policies have been
issued successively, and intelligent manufacturing pilot demonstration projects have been
accelerated, with obvious demonstration effect. With the further deepening of transfor-
mation, China’s manufacturing industry will be further enhanced in digitalization,
networking and intelligence.”

• Example 3 (Stock ID: 000020, Year: 2012) “. . . domestic and international economic
environment is complex, with difficult concerns and positive factors co-existing. On
the one hand, the ability of technological innovation is insufficient. In the new wave of
industrial revolution which centers on global digital and intelligent manufacturing, the gap
between domestic enterprises and developed countries in Europe and the United States in
the field of high-end technology is facing the risk of being widened again, and enterprises
will bear the pain of structural adjustment in the process of industrial upgrading
. . . ”

The quoted paragraph in Example 1 talks about the digitalization development in its
own industry, but not the firm’s own digitalization. In Example 2, the paragraph is a
description of China’s national strategy on digitalization. Example 3 mentions the global
environment of digitalization, but not the firm’s own strategy.

Examples of Identified Production Digitalization To be concrete, we provide some ex-
amples of texts that are identified as production digitalization after performing the text
analysis:

• Example 1 (Stock ID: 002085, Year: 2018): “Our company has intensified the trans-
formation and upgrading efforts, established intelligent factories with robots as the
core, improved the automation level of manufacturing industry, and improved the
core competitiveness. By building a digital platform in the whole field of digital re-
search and development, digital technology and digital manufacturing of Wanfeng,
our company optimized and standardized the operating system, realized the prod-
uct life cycle management, and provided data support for company information
construction and intelligent manufacturing of intelligent factory.”

• Example 2 (Stock ID: 002920, Year: 2018): “. . . . . . The company has built digital in-
telligent factory in an all-round way and established industry-leading highly auto-
mated and information-based production lines. Now digital intelligent factory and
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intelligent storage system have been put into use successively. The construction
project of integrated industrialization of automobile electronics and mobile Internet
technology has officially laid the foundation and is under construction.”

B.3 Supplementary Empirical Results

Scatter Plots of Treatment Effects and the Initial Productivity As a supplement to the
analysis in the main text, Figure B.1 presents scatter plots for different periods after pro-
duction digitalization. From period ` = 0 to period ` = 4, we see that the correlation
between T̂ T i` and ω̂0

iei−1 becomes more and more positive. This means that firms with
higher ex-ante productivity obtain higher productivity gains as time evolves.

Figure B.1: Initial Productivity and Productivity Effects of Production Digitalization
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Note: All fitted lines are from a linear regression of firm-specific treatment effects T̂ T i`

on the firm’s initial productivity ω̂0
iei−1. The initial productivity is normalized using the

industry average productivity for each industry for comparison across industries. Shaded
areas indicate the 95% confidence intervals for the predicted mean value of firm-specific
treatment effects.
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Estimates of the Translog Production Functions Table B.3 displays the estimates of the
translog production functions for 7 industries in the sample. Note that there are large
differences in the production function coefficient estimates, indicating the necessity of
estimating the production function separately for each industry. Moreover, almost all the
coefficient estimates are statistically significant, confirming the plausibility of using the
translog specification to allow the output-input elasticities to depend on the input levels.

Table B.3: Estimates of Translog Production Functions

Industry βl βk βll βlk βkk βt
Food &Beverage 1.282 -2.916 -0.024 0.010 0.073 0.050

(0.001) (0.000) (0.001) (0.000) (0.003) (0.005)
Print & Paper -1.333 -1.757 0.111 0.028 0.035 0.080

(0.083) (0.109) (0.007) (0.002) (0.004) (0.007)
Chemical Synthesis 1.769 -2.868 0.118 -0.135 0.100 0.079

(0.000) (0.000) (0.000) (0.000) (0.001) (0.005)
Electronics Manufacturing 1.282 -2.265 0.140 -0.120 0.079 0.094

(0.000) (0.000) (0.001) (0.000) (0.001) (0.004)
Metal Processing -1.499 0.848 0.125 0.026 -0.027 0.068

(0.001) (0.000) (0.001) (0.000) (0.002) (0.001)
Equipment Manufacturing 1.133 -2.514 0.077 -0.066 0.076 0.070

(0.000) (0.000) (0.001) (0.000) (0.001) (0.004)
Healthcare Manufacturing -0.432 -0.047 0.079 0.014 -0.003 0.081

(0.001) (0.000) (0.001) (0.000) (0.002) (0.004)
Note: The standard errors in the parenthesis are obtained by bootstrapping 500 times.
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C Additional Results

C.1 Additional Moments for Restricted Productivity Processes

Our moment conditions in Proposition 3.1 impose no additional assumptions on the pro-
ductivity evolution process (3). While implementing moment conditions in Proposition
3.1 requires minimal structural assumptions, we require a relatively large sample of two-
year consecutive observations as in Assumption 3.3. Such data requirements can be sat-
isfied when the panel satisfies a difference-in-difference type design. However, if the
treatment variable is volatile over time, we may need to discard a substantial fraction of
the firms to implement (8) and (9), which leads to inefficient use of data. We now con-
sider several alternative assumptions on the evolution process that allow us to derive
more flexible moment conditions and make use of firms with volatile treatment status.

C.1.1 Independent Evolution Process

Let’s consider the case where the two potential productivity processes evolve indepen-
dently as in Example 3. In this case, we may substitute the Markov process back several
periods to form additional moment conditions. Even for a firm that changes its treatment
status every period, we know the treatment status every two periods must coincide. To
form moment conditions for an independently-productivity process, we impose the fol-
lowing assumption:

Assumption C.1. For d = 0, 1, the Markov process ωdit satisfies

ωdit = h̄
(s)
d (ωdit−s) + r(εdit, ..., ε

d
it−s+1),

where h(s)
d is an s-period transition function and r(·) is linear in all arguments.

Assumption C.1 is satisfied for the well-known AR(1) process. The linearity of r(·)
ensures that we can generalize moment conditions (8) and (9) to an s-period lagged evo-
lution process. Note that we have to rule out the evolution process h+ and h− for the
transition periods.

Corollary C.1. Suppose Assumption C.1 holds and the productivity process satisfies Example 3,
then the following two moment conditions hold:

E[ωit(β)− h̄(s)
0 (ωit−s(β))|Zit−s+1, Dit = Dit−s = 0] = 0, (C.1)

E[ωit(β)− h̄(s)
1 (ωit−s(β))|Zit−s+1, Dit = Dit−s = 1] = 0. (C.2)

49



Moment conditions (C.1) and (C.2) allow us to use a larger fraction of firms in the
dataset. However, we recommend combining moment conditions (C.1) and (C.2) with (8)
and (9) to estimate the production functions unless Assumption 3.3 fails. It’s unfortunate
that we cannot show non-parametric identification of production function with moments
(C.1) and (C.2) alone: The error terms εit−s is correlated with kit and lit for all s ≥ 1, and
thus they are not in instrument set Zit−s+1. Therefore, we cannot apply the GNR trick to
differentiate both sides of (C.1) to identify the production function.

One may argue that kit−s+1 and lit−s+1 can serve as instruments for kit and lit. How-
ever, without solving the firms’ dynamic optimization problem, we cannot establish the
functional relationship between (kit, lit) and (kit−s+1, lit−s+1), and we cannot prove the
non-parametric identification of production functions. When the production function is
Cobb-Douglas, the log-linear form of the production function along with the valid instru-
ment kit−s+1 and lit−s+1 allow us to identify the production function parameters and the
evolution process.

C.1.2 Divergent Productivity Processes

Now we consider the productivity process in Example 2. Since only the observed pro-
ductivity matters for the evolution process, we can further derive the moment conditions
at the transition periods.

Corollary C.2. Suppose Assumptions 2.1-3.3 hold and the productivity evolution process satisfies
Example 2. Then the moment condition (4) (and respectively (6)), (8), (9) and

E[ωit(β)− h+(ωit−1(β))|Zit, Dit = 1, Dit−1 = 0] = 0, (C.3)

identify the production functions, and the evolution processes h̄d and h+
1 nonparametrically up to

a constant difference.

The additional moment conditions in Corollary C.2 when the panel is short or when
we only observe one period after the treatment status changes. Corollary C.2 requires
the transition period to be treated separately from the consistent treatment status period.
Moment condition (C.3) is imposed to identify the positive transition process h+.

C.2 Identifying CATT with an Alternative Assumption

Assumption C.2. The Markov process ω0
it satisfies

ω0
it = h̄

(s)
0 (ω0

it−s) + r(ε0it, ..., ε
0
it−s+1)
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where h̄(s)
0 is an s-period transition function and r(·) is linear in all its arguments. Moreover, the

E[ε0it−s+`|ω0
it−s] = 0 for all ` ≥ 0.

Proposition C.1. Under Assumption 3.2, 4.2, and C.2, the `-period-ahead CATT is identified as
CATTg,`(ω) = E[ωiei+` − h̄

(`)
0 (ωiei−1)|i ∈ g, ωiei−1 = ω].

Proof. Note that conditional on ei = t,

(CATTg,`(ω)|ei = t) =(i) E[ωit+` − h̄(`)
0 (ω0

it−1) + r(ε0it, ..., ε
0
it−s+1)|ei = t, i ∈ g, ωiei−1 = ω]

=(ii) E[ωit+` − h̄(`)
0 (ωit−1)|ei = t, i ∈ g, ωiei−1 = ω],

where (i) by substituting the ω0
it with the evolution process in Assumption C.2. Note that

the treatment is absorbing, so

E[r(ε0it, ..., ε
0
it−s+1)|ei = t, i ∈ g, ωiei−1 = ω] = E[r(ε0it, ..., ε

0
it−s+1)|Dit = 1, i ∈ g, ωiei−1 = ω].

As a result, (ii) follows by Assumptions 3.2 and linearity of r(·). The result in the propo-
sition follows by further taking expectations with respect to ei.

Assumption C.2 is satisfied for an AR(1) productivity process, but generally fails when
non-linearity appears in the transition function h̄0. Therefore, Assumption C.2 can be
restrictive.

C.3 Counterfactual Treatment Effect

Treatment effect objects such as ATT and ATE are useful when we take a retrospective
evaluation of the treatment or policy effect. However, in many settings, policymakers are
deciding whether to apply the same treatment policy to a counterfactual group of firms
based on the knowledge from the currently available data.

In this section, we consider a program that rolls out in several phases and the treat-
ment status is absorbing. We start with an initial full set of firms (denoted by S) that are
not treated. At time t0, a subset of firms become treated (denoted by Str) while the rest
of firms remain untreated (denoted by Sut). Untreated firms cannot change their treat-
ment status unless a new phase of the program begins. A policymaker stands at time
period t0 + s and has access to firm-level data up to time t0 + s − 1 and needs to decide
whether to start a new phase of the program. There are many empirical examples where
the treatment program rolls out in several phases: For example, the State-Owned Enter-
prise reform in China16 first took place in the Northeast provinces and rolled out to the

16This is known as the privatization process of the state-owned enterprises.
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rest of the country in several phases.
The policymaker is interested in the treatment effects on the untreated group Sut,

while the treatment effects identified in previous sections are evaluated using the whole
sample S. These two quantities in general do not coincide even when the policy is a
fully randomized controlled experiment. This is because the treatment effect objects at
time t0 depends on the distribution of potential outcome ω1

it0−1. While a fully randomized
treatment ensures that F (ω1

it0−1|i ∈ Str) = F (ω1
it0−1), the s-period ahead distribution of

potential outcome ω1
it0+s−1 will not be the same as the t0 − 1 period potential outcome

distribution, i.e. F (ω1
it0+s−1|i ∈ Str) 6= F (ω1

it0−1), unless the productivity distribution is
stationary.

We, therefore, seek to characterize the counterfactual treatment effect objects that al-
low the policymaker to evaluate the value of extending the program to the rest of the
firms at time t + s. In general, without imposing further structural assumptions other
than Assumptions 2.2-A.3, it is almost impossible to identify the counterfactual treatment
effect objects: The target treatment effect is defined as the difference ω1

it0+s − ω0
it0+s, but

for the Sut firms, we have at best the knowledge of ω0
it0+s−1 but not ω1

it0+s−1. We therefore
consider several additional structural assumptions that allow us to evaluate the counter-
factual treatment effects defined in the following:

ATEcount
s,l ≡ E[ω1

it0+s+l − ω0
it0+s+l|i ∈ G], (C.4)

which is the l-period ahead counterfactual treatment effect for group G ⊆ Sut firms if the
treatment take place at time t0 + s.

C.3.1 Divergent Productivity Process

Recall that the difficulty of characterizing the counterfactual treatment effect comes from
the lack of knowledge of ω1

it0+s−1. However, the divergent productivity process in Exam-
ple 2 implies the coincidence of two potential outcomes before treatment status changes:
ω0
it0+s−1 = ω1

it0+s−1 for all untreated firms i ∈ Sut and s ≤ 0. Therefore, we can characterize
the counterfactual treatment effect.

Proposition C.2. Let the productivity evolution process satisfy Example 2. Moreover, suppose the
conditional parallel trend assumption 4.2 holds. For a subset G ⊆ Sut of not-yet treated firms at
time t0 +s that are assigned to take treatment at t0 +s, the instantaneous counterfactual treatment
effect is identified as

ATEcount
s,0 = E[h+(ωit0+s−1)− h̄0(ωit0+s−1)

∣∣i ∈ G],
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where h+ is identified from Corollary C.2.

Proof. By the divergent productivity process assumption, ω1
it0+s = h+(ωit0+s−1) + ε1it+s and

ω0
it0+s = h̄(ωit0+s−1) + ε0it+s. The result follows by the conditional mean zero condition:
E[εdit+s|Dit+s] = 0 for d ∈ {0, 1}.

For l period ahead counterfactual treatment effect, we need additional structural as-
sumptions on the productivity process shocks so that we can simulate the productivity
process several periods ahead.

Assumption C.3. (i). The shocks satisfy εdit ∼i.i.d. Gd
ε (·) for d ∈ {0, 1}, where the i.i.d is over

both firm index i and time index t. (ii). No selection in pre-treatment shocks: ε0it ∼i.i.d G0
ε(·) for

t < t0. (iii) No selection in already-treated group shocks: ε1it|i ∈ Str ∼i.i.d G1
ε(·) for t0 ≤ t < t0+s.

Assumption C.3 is similar to Assumption 4.4 except that we also require that the dis-
tribution G1

ε(·) is identified from the already treated firms Str. This is because, for the
factual treatment, we can observe the ω1

it+s once the firms are treated. However, for the
counterfactual treatment effect, we need to simulate both the treated and untreated future
productivity.

Proposition C.3. Under Assumption 4.2, 4.3, and C.3, G0
ε , G

1
ε are identified, and the `-period-

ahead counterfactual treatment effect at period t0 + s is identified as

ATEcount
s,` = E(G1

ε )
` [h̄

(l−1)
1 (h+(ωit0+s−1, ε

1
it0+s), ε

1
it0+s+1, ..., ε

1
it0+s+l)|i ∈ G]

− E(G0
ε )
` [h̄

(`)
0 (ωit0+s−1, ε

0
is, ..., ε

0
is+`)|i ∈ G],

where the expectation on (Gd
ε )
l is taken over the joint distribution of (εdit0+s, ..., ε

d
it0+s+`).

Remark C.1. The characterization of the counterfactual treatment effect also highlights another
reason in favor of the potential productivity process over the endogenous productivity method (Do-
raszelski and Jaumandreu, 2013). Recall that Doraszelski and Jaumandreu (2013) do not model the
transition period and implicitly assume that h+ = h̄1 in the identifying moment condition. While
imposing h+ = h̄1 may not lead to a large bias in the production function estimates when the panel
is long, it does lead to a bias in the counterfactual treatment effect, especially the instantaneous
treatment effect ATEcount

s,0 .

C.3.2 Stationary Conditional Potential Outcome Moments

In more general models, we do not have information on the ω1
it+s−1 for the not-yet-treated

group Sut. We now investigate conditions where we can transfer the knowledge of the
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factual treatment effect to the counterfactual treatment effect. In particular, we want the
stationary conditional distribution of potential outcomes:

Assumption C.4. The distribution of ω1
it0−1|(ω0

it0−1 = w, i ∈ Str) is the same as the distribution
of ω1

it0+s−1|(ω0
it0+s−1 = w, i ∈ G).

Assumption C.4 is the high-level assumption on potential productivity distribution.
There are two constraints embedded in C.4: 1. No selection in the potential outcome.
This is reflected in the requirement that we condition on the different firm groups Str and
Sut; 2. The conditional distribution of ω1

it is stationary at time t0 − 1 and t0 + s− 1.

Proposition C.4. Suppose Assumptions C.3 and C.4 hold. The counterfactual treatment effect is
identified as

ATEcount
s,l = E

{
E[ωit0+`|i ∈ Str, ωit0−1 = ωit0+s−1]

∣∣∣∣i ∈ G}−E(G0
ε )
` [h̄

(`)
0 (ωit0+s−1, ε

0
is, ..., ε

0
is+`)|i ∈ G].

Proof. We first note that

E[ωit0+`|i ∈ Str, ωit0−1 = ωit0+s−1]

= E(G1
ε )
`,ω1

it0−1
[h̄

(l−1)
1 (h+(ω1

it0−1, ω
0
it0−1, ε

1
it0

), ε1it0+1, ..., ε
1
it0+l)|i ∈ Str, ωit0−1 = ωit0+s−1]

=(∗) E(G1
ε )
`,ω1

it0+s−1
[h̄

(l−1)
1 (h+(ω1

it0+s−1, ω
0
it0+s−1, ε

1
it0+s), ε

1
it0+s+1, ..., ε

1
it0+s+l)|i ∈ G, ωit0+s−1]

= E[ω1
it0+s+l|i ∈ G, ωit0+s−1]

where we use Assumptions C.3 and C.4 in the (∗) step.
Then the counterfactual treatment effect is identified as

ATEcount
s,l = E

{
E[ω1

it0+s+l|i ∈ G, ωit0+s−1]− E[ω0
it0+s+l|i ∈ G, ωit0+s−1]

∣∣∣∣i ∈ G}
= E

{
E[ωit0+`|i ∈ Str, ωit0−1 = ωit0+s−1]

∣∣∣∣i ∈ G}
− E(G0

ε )
` [h̄

(`)
0 (ωit0+s−1, ε

0
is, ..., ε

0
is+`)|i ∈ G].

The result follows.

The identified counterfactual treatment effect in Proposition C.4 uses two different ap-
proaches to impute the unrealized future potential productivities. For the treated future
potential productivity, we use the stationary distribution assumption and use the already
treated firms to impute the ωit0+s+l. In particular, we match each not-yet-treated firm at
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time t0 +s−1 with an already-treated firm at time t0−1 with the same realized productiv-
ity. For the untreated potential future productivity, we simulate the productivity process
into the future.
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