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Abstract

We study the identification and estimation of treatment effects on the productivity

of firms. Our approach embeds standard methods of production function estimation

into a dynamic potential outcome framework. This new framework clarifies the neces-

sary assumptions and potential pitfalls when quantifying causal effects on productiv-

ity. Our method can be applied under weaker assumptions than those that have been

previously employed in the literature and does not require solving the firm’s dynamic

optimization problem. We apply our method to study the effect of production digital-

ization on productivity growth. Our results robustly show that the average treatment

effect of production digitalization is not significant in a window of five years after

production digitalization. However, we find substantial heterogeneity in the impact

of production digitalization on productivity across time and industries. Importantly,

firms with lower productivity before production digitalization tend to experience less

productivity growth over time.
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1 Introduction

Researchers have long been interested in quantifying the effect of an investment or inter-
vention on a firm’s productivity.1 A natural two-step approach would be to first estimate
the firm’s productivity and then compare this with an estimate of what its productiv-
ity would have been in the counterfactual world absent the change. Problematically,
however, issues can arise if one simply borrows one of the typical methods of estimat-
ing production functions and feeds the estimated productivities into a standard policy
evaluation method for estimating treatment effects. In general, the issue is that both of
these procedures rely on distinct sets of assumptions that may be incompatible with each
other, leading to incorrect inferences about the causal effects (De Loecker and Syverson,
2021). In this paper, we propose a method of estimating causal effects on productivity
that fits the general two-step description, but we adapt existing methods to ensure that
the assumptions invoked to estimate the realized and counterfactual productivities are
consistent and sufficient to identify the treatment effect.

Specifically, when estimating productivities from firm- or plant-level data, researchers
usually assume that productivity follows a Markov process (Olley and Pakes, 1996; Levin-
sohn and Petrin, 2003; Ackerberg et al., 2015; Gandhi et al., 2020). Meanwhile, when
estimating treatment effects on productivity, the firm’s productivity in the treated and
untreated states would usually be modeled as potential outcomes. If the firm’s potential
productivities in the treated and untreated states follow Markov processes, then the re-
alized productivity may not be Markovian. For example, if the intervention of interest
is the adoption of a new production technology, the plant’s potential productivities with
and without the new technology might be modeled as independent Markov processes. In
the period in which the firm first adopts the technology, the firm’s realized productivity
will be its treated productivity, whose distribution depends on the previous treated pro-
ductivity as opposed to the previous untreated productivity that was realized in the data.
As a result, the estimated productivity will be biased if the researcher employs standard
methods that assume the sequence of realized productivities is Markovian. We show that
one can simply restrict attention to periods in which the plant remained treated or un-
treated in sequential periods in order to estimate the production function and the realized
productivity in each period. In fact, one can separately estimate production functions in

1See excellent literature reviews by Bartelsman and Doms (2000) and Syverson (2011). Empirical studies
come from a wide range of fields including trade and development (e.g., Pavcnik, 2003; De Loecker, 2007;
Amiti and Konings, 2007; De Loecker, 2013; Yu, 2015; Brandt et al., 2017), industrial organization (e.g.,
Doraszelski and Jaumandreu, 2013; Braguinsky et al., 2015), political economics (e.g., He et al., 2020; Chen
et al., 2021), and public economics (Liu and Mao, 2019).
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the treated and untreated states in order to allow for factor-bias in the intervention.
Given consistent estimates of the plant’s realized productivity in each period under

observation, the researcher’s remaining task is to estimate the “missing counterfactual,”
i.e., the potential productivity that was not realized in the data. If the intervention is
purely exogenous, then a standard difference-in-differences approach can be used to es-
timate the average treatment effect. However, the decision of when to begin exporting
or when to adopt a new technology is likely to be endogenous, and the standard parallel
trends assumption is likely to fail. We show that the structural assumptions invoked to
estimate the productivities can be redeployed to easily solve this selection issue. Namely,
the fact that untreated productivity follows a Markov process implies that an untreated
firm or plant can be matched to a treated one with the same realized productivity in the
period before it was treated in order to fill in the missing counterfactual.

In comparison with earlier work, our approach is both more generally applicable and
more narrowly focused on estimating the treatment effect. It is more general in the sense
that earlier work estimated returns to research and development or to exporting by as-
suming realized productivity follows a controlled Markov process (e.g., De Loecker, 2013;
Doraszelski and Jaumandreu, 2013; Chen et al., 2021). This assumption is more restric-
tive than the assumption we adopt and may not be satisfied if, for example, potential
producitivies follow independent Markov processes. At the same time, our work is more
narrowly focused because we do not attempt to estimate and identify all features of the
model. We are only interested in estimating a binary treatment effect, for example, the
average treatment on the treated where the treatment would be defined as actively in-
vesting in R&D or exporting.2 As a result, we do not have to solve the firm’s dynamic
optimization problem or identify the entire productivity process in order to measure, for
example, the effect of adopting a new technology. We only need to identify the mean
productivity in the next period conditional on the current productivity in the event that
the treatment status does not change.

Because our goals and requirements are more focused, we opt not to solve the firm’s
dynamic optimization problem, which is similar to the approaches in existing empirical
productivity literature (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Aw et al., 2011;
Doraszelski and Jaumandreu, 2013). Our approach is more typical of the dynamic poten-
tial outcomes literature, in which the treatment selection rule is left unspecified except for
some timing assumptions. Namely, we assume that the firm chooses its treatment status

2The methodology in this paper does not extend to the case of continuous treatment variables. Accord-
ingly, we would not use this framework to estimate the marginal effect of R&D expenditures or export sales.
We leave this extension for future work.
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for the current period before the realization of its productivity shock, but we allow the
firm to select its treatment status based on all previous treated and untreated potential
productivities. Thus, the timing of a firm’s choice of treatment status is modeled in the
same way that capital is in most of the production function estimation literature.

Instead of precisely modeling how firms select into treatment, we make a high-level
assumption about the fraction of observations in the treated and untreated states in order
to consistently estimate the production function. Specifically, Assumption 3.3 requires
that the data include positive fractions of observations in which firms remain untreated
in consecutive periods, are untreated then become treated, and remain treated in consec-
utive periods. In an ideal setting for policy evaluation, we would observe two periods
before and after treatment was randomly assigned among a group of firms. More gen-
erally, however, our framework allows treatment status to be endogenously determined
outside of the model. For example, firms might select into treatment on the basis of an un-
modeled idiosyncratic switching cost. Moreover, firms do not need to choose treatment
optimally.

Our work also relates to earlier work that uses regression-based methods to estimate
causal effects on productivity (e.g., Pavcnik, 2003; Amiti and Konings, 2007; Yu, 2015; He
et al., 2020). In this approach, the firms’ productivities are estimated in a first step that
ignores the variation in the treatment status. In the second step, regression methods are
used to estimate the average effect of a policy on productivity. Because this procedure
generally yields inconsistent estimates of an average treatment effect, even under the
strong assumptions that realized productivity follows a Markov process and treatment is
exogenously assigned, our more robust methodology provides a useful alternative. We
discuss these issues in Section 3.3.

Finally, De Loecker (2007) and De Loecker (2013) represent early examples of the hy-
brid approach we pursue in this paper, which combines traditional production func-
tion estimation with policy evaluation tools. De Loecker (2007) estimates a production
function under the assumption that productivity follows a controlled Markov process
and subsequently estimates a treatment effect using one of the three methods: propen-
sity score matching, the estimated productivity transition function, or a difference-in-
differences analysis. Compared to this work, we relax the assumptions on the productiv-
ity process and emphasize the conditions under which the estimand can be interpreted as
an average treatment effect or an average treatment effect on the treated.

The rest of the paper is organized as follows. In Section 2, we formally introduce a
model of a firm that uses capital, labor, and intermediate inputs to produce. Output is
further affected by the treatment status in the current period and a Hicks-neutral produc-
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tivity factor. The firm’s realized productivity is equal to one of the treated or untreated
potential productivities depending on the firm’s treatment status. The potential produc-
tivities are assumed to follow a Markov process that generalizes the assumptions typically
used in the literature. The key restriction is that the counterfactual productivity in the pre-
vious period is independent of the current productivity if the treatment status does not
change, but we do not restrict the evolution of the potential productivities in the period
in which the treatment status changes. This allows us to accommodate a wide range of
plausible scenarios. As previously mentioned, the potential productivities might evolve
independently of one another. Alternatively, the potential productivities might follow
parallel paths or the treated productivity path might branch from the untreated produc-
tivity path in the period in which the firm takes treatment. The researcher does not need
to take a stand about the nature of the treatment in order to estimate the treatment effect.

In Section 3, we first review the identification of the production function using Gandhi
et al. (2020) and Ackerberg et al. (2015) in the setting in which treatment status does not
change. We then show how the moment conditions must be modified to allow for varia-
tions in treatment statuses. Here, the key assumption that enables the proposed method is
that treatments are selected prior to the realization of the productivity shock. Otherwise,
the assumptions and data requirements are analogous to those of Gandhi et al. (2020) and
Ackerberg et al. (2015): we require panel data with at least two periods and many firms.
In addition, we must observe some firms that remain untreated for two consecutive pe-
riods, and another group of firms that switch from the untreated to the treated state, and
remain treated for two consecutive periods. This data feature allows us to identify the
production function and treatment effect. In an appendix, we discuss an alternative as-
sumption and moment conditions that might be used if this assumption on firm types
does not appear to be satisfied in the data.

In Section 4, we discuss the identification of the average treatment effect on the treated.
The average treatment effect is generally not identified without stronger structural as-
sumptions, and we thus discuss its identification in the appendix. In contrast to the liter-
ature on dynamic treatment effects (Heckman and Navarro, 2007; Abbring and Heckman,
2007; Vikström et al., 2018; Sun and Abraham, 2021), the outcome of interest is not directly
observed, and additional structural assumptions are needed to infer it from data. Apart
from this distinction, our approach builds on the dynamic potential outcome framework.
As has been observed in the literature, one must be careful when defining and identify-
ing treatment effects in a dynamic potential outcome framework because firms who are
treated in one period may return to the untreated state but continue on an altered trajec-
tory as a result of their temporary treatment assignment. We do not add to this discussion,
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but acknowledge the complexities involved. For the sake of simplicity, we focus on the
case of an absorbing treatment state in which firms remain forever after they first select
into treatment. Accordingly, our identification and estimation results target the ℓ-period
ahead average treatment effect on the treated, which answers the question of how much
more or less productive a firm is ℓ periods after it is initially treated compared to what its
productivity would have been if it had remained untreated the entire time.

In Section 5 we discuss the ramifications of placing the Markov assumption on the
potential productivities as opposed to the realized productivities.

In Section 6, we use our methodology to estimate the productivity effects of produc-
tion digitalization in the manufacturing sector of China. Recent work has struggled to
find evidence in aggregate production statistics of any productivity gains associated with
the rise of AI-related production technologies (Brynjolfsson et al., 2017). In contrast with
our approach, existing research relies on reduced-form regressions on the productivity
estimates to detect the impact of the adoption of new technologies (Draca et al., 2009;
Gal et al., 2019, among others). Our structural analysis of firm-level data shows that, in
a window of five years, the average productivity gains from production digitalization
are positive in the first three periods after production digitalization but are negative in
later periods. However, the productivity effects are not statistically significant. Moreover,
the productivity effects of digitalization vary substantially across industries. The greatest
productivity gains are realized in industries that use more complex production processes
like equipment, electronics and healthcare. The results on the firm-specific productivity
effects reveal that the effects of digitalization on productivity become more dispersed as
time evolves. Importantly, we also find that firms with lower pre-treatment productivity
receive smaller productivity gains over time. In general, our results support the view that
new digital technologies have unequal effects on firms’ productivities depending on the
firm’s characteristics (Bloom et al., 2012; Bresnahan et al., 2002; Brynjolfsson et al., 2021).

Using the same dataset, we also show that regression-based methods may lead to
qualitatively different conclusions. In fact, when we pattern our analysis off of existing
methods, we find a significantly negative effect on production digitalization on produc-
tivity. This conflicting result is not surprising in light of the specification issues with
regression-based approaches and the substantial heterogeneity revealed by our analysis,
but it demonstrates the potential for quantitatively significant discrepancies between ex-
isting approaches and ours.

Finally, Section 7 concludes.
All proofs are collected in Appendix B.
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2 The Econometric Framework

2.1 A Firm Model with Treatment and Potential Productivity

Firms produce with a Hicks-neutral production technology. Both the firms’ production
technology and the evolution of their productivity are affected by a binary treatment. Let
Dit denote the treatment indicator Dit ∈ {0, 1}, with Dit = 1 indicating that firm i re-
ceives the treatment in period t. The treatment can be imposed externally (e.g., trade lib-
eralization, environmental regulations, etc.) or chosen by the firm (e.g., R&D investment,
importing, exporting, etc.). In period t, firm i has the following production function

Qit = eωit+ηitF (Kit, Lit,Mit, Dit;β), (1)

where Qit denotes the output quantity, ωit denotes the realized productivity, ηit denotes
an ex-post shock to productivity that is not known when a firm choose inputs for time t,
Kit denotes capital inputs, Lit denotes labor inputs, Mit denotes material inputs, Dit is the
treatment status indicator, and β is a parameter vector. The dimension of β can be infinite
when the production function is non-parametric. Moreover, β can also include time-
related variables to account for secular trends in the production function (e.g., Doraszelski
and Jaumandreu (2013)). Note that the production function may depend on the treatment
Dit, which captures possible impacts on the organization of production or managerial
efficiency (Chen et al., 2021).

The two potential outcomes of productivity are ω0
it and ω1

it. The binary treatment Dit

determines the realized productivity through the following equation:

ωit = ω1
itDit + ω0

it(1−Dit). (2)

The firm may know its potential productivities when making decisions, but the econo-
metrician does not directly observe either potential outcome. To facilitate our exposition,
we define a ternary variable to classify possible changes in the treatment status:

Git = Dit −Dit−1 ∈ {−1, 0, 1} ,

where Git = 1 indicates that firm i became newly treated in period t, Git = 0 indicates
no change in treatment status, and Git = −1 indicates that a firm went from the treated
to untreated state. We focus on the absorbing treatment case (Git ∈ {0, 1} for all i and t),
and leave the general case as an extension. Conventionally, the realized productivity is
assumed to follow a first-order Markov process (Olley and Pakes, 1996; Levinsohn and
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Petrin, 2003; Ackerberg et al., 2015). We generalize this assumption with the following
Markov process for (ω1

it, ω
0
it):

ω1
it = 1(Git = 0)h̄1(ω

0
it−1, ω

1
it−1) + 1(Git = 1)h+(ω0

it−1, ω
1
it−1) + ϵ1it,

ω0
it = h̄0(ω

0
it−1, ω

1
it−1) + ϵ0it,

(3)

where h+ is the transition function of ω1
it when the firm becomes newly treated, and h̄1

and h̄0 are the transition functions when the treatment status is unchanged.3 We further
impose the following assumption to make sure that our potential productivity process (3)
is consistent with the specification in the existing literature that assumes no variation in
treatment:

Assumption 2.1. (Diagonal Markov Process) The function h̄d depends only on ωd
it, so we may

abuse notation to rewrite
h̄d(ω

0
it, ω

1
it) = h̄d(ω

d
it),

and E[ϵdit|ω0
it−1, ω

1
it−1] = 0 for d = 0, 1.

Assumption 2.1 says that, the evolution of potential outcome ω0
it does not depend

on ω1
it if the firm’s treatment status does not change. This assumption generalizes the

productivity processes previously considered in the literature because, when Git = 0 for
all i and t, each firm’s productivity satisfies ωd

it = h̄d(ωit−1) + ϵdit, for d ∈ {0, 1}. Therefore,
we can think of the conventional Markov productivity process as the special case in which
there is no treatment, i.e., Dit = 0 for all i and t.

A wide range of models can be viewed as special cases of the generalized produc-
tivity evolution process (3). Below, we list three examples of productivity processes that
satisfy equation (3), though the econometrician does not need to assume that the evolu-
tion process fits any one of these narratives. The truth can be something of a mixture of
the following or other more exotic productivity processes.

Example 1. (Parallel Shifted Productivity) A policy might simply shift the productivity process
by a constant amount. This can be accommodated by assuming potential productivities almost
surely satisfy ω1

it − ω0
it = C for some constant C. More precisely, we would assume that potential

productivities (i) have an initial difference of C, i.e., ω1
i1 = ω0

i1+C almost surely for some constant
C, (ii) are affected by the same shocks ϵ1it = ϵ0it almost surely for all t, and (iii) evolve according to
transition functions that satisfy h̄1 = h+, and h̄1(ω) = h̄0(ω − C) + C.

3We will introduce another transition function h− to govern the transition out of treatment when we
later consider the case of a non-absorbing treatment.
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Example 2. (Diverging Productivity Paths) Consider a case where the binary treatment repre-
sents whether a firm invests in R&D. If a firm first begins investing in R&D at t+1, then we might
assume that only ω0

it affects ω1
it+1. This assumption can be modeled by h+(ω0

it, ω
1
it) = h+(ω0

it). Be-
cause ω1

is for s < t is irrelevant to the firm’s future outcomes, we are essentially imposing ω1
is ≡ ω0

is

for all pre-treatment periods s ≤ t.

Example 3. (Independent Productivity Evolution) In some cases, a firm chooses between two
types of production technologies. We might assume that the firm’s total factor productivity using
either technology evolves without influence from the other and that the firm simply jumps from
one productivity path to the other when it switches technologies, we would impose the additional
restriction that h̄1 = h+.

We note that the second example could be equivalently modeled in terms of realized
productivities as in ωit = h̃(ωit−1, Dit, Dit−1) + ϵit without refering to the counterfactual
potential productivities. The only difference with earlier work that treats realized produc-
tivity as a controlled Markov process would then be that we include a lag of the treatment
status indicator in the transition function to allow initial treatment effects and subsequent
effects to be different. In Section 5, we more formally compare the Markov process for po-
tential productivity in equation (3) to this alternative. We observe that (3) is more general
because this particular extension to the previous literature maintains the assumption that
realized productivity is Markovian. Consequently, our more general potential outcome
framework imposes fewer restrictions on the causal effect of treatment. 4

Finally, we observe that alternative generalizations of (3) would be difficult to accom-
modate without strengthening the assumptions commonly used to estimate production
functions. For example, one might wish to relax Assumption 2.1 and allow the poten-
tial productivity ω1

it to depend on both the potential productivities. In general, however,
we would not be able to identify the production function from the observed inputs and
outputs because the evolution of productivity would be influenced by the unobserved
counterfactual productivity. Unlike the exogenous productivity shock, this latent pro-
ductivity would be correlated with the firm’s input choices if the firm anticipates that
their treatment status might change in the future, which would invalidate the moment
conditions we use to identify the production function. Thus, in addition to highlighting
the important distinction between the evolution of realized productivity and potential
productivities, the dynamic potential outcome framework in this paper elucidates the
assumptions required to identify causal effects on productivity.

4We can even allow the evolution at the transition process h+ to depend on i, but we ignore this extension
for ease of exposition. For example, different firms may select into treatment at different times within a year,
which may lead to differences in h+

i when the model is estimated using annual data.
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Firms’ Behavior and Timing of Firms’ Decisions

Following Ackerberg et al. (2015) and Gandhi et al. (2020), we distinguish the static inputs
from the pre-determined inputs.

Assumption 2.2. (Timing of Inputs) Capital Kit is determined at or before t − 1, labor can be
determined at or before t − 1 or a static input chosen during period t. Intermediate input Mit is
determined no sooner than other inputs after the realization of ωit.

The treatment variable can be either determined by the external environment or cho-
sen by the firm. We distinguish between these two cases and make the following assump-
tion on its timing.

Assumption 2.3. (Timing of Treatment) (1) When the treatment is externally imposed, Dit is
determined at or before t−1; (2) When the treatment is a firm choice, Dit is chosen before (ω0

it, ω
1
it)

is realized but possibly after observing (ω0
it−1, ω

1
it−1).

Firms make two types of choices at the time t. First, given the realized produc-
tivity ωit and pre-determined inputs, firms choose the static inputs to maximize their
short-run revenue. Then, firms choose the next period pre-determined inputs and pos-
sibly the treatment status Dt+1 in period t + 1 given the history of state variables Sit ≡
(Kit, Lit, Dit, ω

1
it, ω

0
it, ζit), where ζit is an idiosyncratic cost shock relevant the dynamic de-

cision5. We summarize the firm-decision timeline in the following graph when the labor
is predetermined and define the firms’ information set correspondingly.

Figure 1: Timeline for a firm’s decision.

Definition 1. When deciding (Kit+1, Lit+1, Dit+1,Mit), firm i’s time-t information set is given
by

IF
it = {Kit, Lit, (ω

0
is, ω

1
is, Dis, kis−1, lis−1,Mis−1, ζis)s≤t}.

When treatment is externally assigned, our model resembles a large class of models
considered in the literature on productivity estimation (Olley and Pakes, 1996; Levinsohn
and Petrin, 2003; Ackerberg et al., 2015; Gandhi et al., 2020). However, when treatment

5For example, ζit can be idiosyncratic costs of taking treatment.
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is endogenous, the firm can choose the treatment status Dit+1 based on its expected pro-
ductivity gains and the latent shock ζit given its information set IF

it . This selection on
unobservables complicates the the identification of the treatment effect on productivity,
and it prohibits the identification of the full model. Specifically, it prohibits the identifi-
cation of the transition function h+ that governs the period in which firms first select into
treatment. In contrast, the endogenous productivity approach estimates the treatment
effect as a function of all the primitives of the model (Aw et al., 2011; De Loecker, 2013;
Doraszelski and Jaumandreu, 2013; Peters et al., 2017).

2.2 Treatment Effects

Before discussing the identification of the treatment effect, we first define the objects of in-
terest that we attempt to recover from the data. In a typical potential outcome framework,
the causal effect on an individual would be straightforwardly defined as the difference in
the potential outcomes. In our setting, however, the realized potential outcome is not
directly observed in the data; rather, a firm’s total factor productivity is inferred from ob-
served inputs and outputs. Moreover, the total factor productivity can only be identified
up to scale. We must therefore carefully consider what we mean by the causal effect of a
treatment and choose a normalizing factor that leads to sensible conclusions. Specifically,
we need to normalize the scale of productivity so that we can estimate an average treat-
ment effect of zero if exogenously changing a representative firm’s treatment status does
not increase physical output using the same vector of inputs.

To clarify the issue, we note that selection into treatment can affect firm output relative
to the counterfactual in which the firm remains untreated in three ways. First, when
Git = 1, firm i’s current productivity switches from ω0

it to ω1
it. We will refer to ω1

it − ω0
it as

the contemporaneous treatment effect. Second, the productivity evolves according to h̄1

instead of h̄0, which does not have a contemporaneous effect but changes the trajectory
of the firm’s future productivity. We will refer to h̄1(ω

1) − ω1 − h̄0(ω
0) + ω0 as the trend

effect. Third, the production function can change in ways that we have not yet specified.
The potential change in production technologies poses a problem when defining the

causal effect of an intervention on total factor productivity because, by definition, total
factor productivities explain why some firms produce more using the same observable
inputs and the same production technology. If the production technology can change
arbitrarily when treatment changes, then it is not meaningful to compare total factor pro-
ductivities between the firm and itself in the counterfactual world in which it did not
receive treatment. For example, if F (Kit, Lit,Mit, Di = 0;β) = AF (Kit, Lit,Mit, Di = 1;β)
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for all (Kit, Lit,Mit), then we might reasonably wish to conclude that the treatment caused
total factor productivity to increase by a factor of A even if the treatment had no effect on
the evolution of the idiosyncratic, time-varying component of total factor productivity.

Consequently, we must either assume that the intervention has no effect on the pro-
duction technology or normalize the relative scale of the production functions so that we
can make comparisons across the treated and untreated states. We suggest choosing a
benchmark vector of inputs (K0, L0,M0), e.g. the mean input vector in an industry, and
relating the scale of the production using F (K0, L0,M0, Di = 0;β) = F (K0, L0,M0, Di =

1;β). Although the choice of benchmark affects the relative scale of the production tech-
nologies in the treated and untreated states, and therefore influences the estimate of the
contemporaneous treatment effect, the econometrician can draw policy-relevant conclu-
sions by choosing (K0, L0,M0) to be representative of the industry or a group of firms
within the industry. Under this normalization, we can conclude the intervention has no
contemporaneous effect if it has no expected contemporaneous effect on the idiosyncratic
component of a representative firm using the benchmark input vector. If a policymaker
then asks whether the representative firms would instantly become more productive if
the firm were exogenously assigned the treatment, the answer would be no, on average.

On the other hand, this normalization does not affect the identification of the trend
effect. Notice that if the log-productivity ω1

it is identified up to a constant, then we will
be able to recover the transition function h̄1 up to a shift by that same constant. Namely,
suppose ω̃1 = ω1 + a for some scalar a. Then the data would be equally well explained
by the transition function h̄1(ω) and h̃1(ω̃

1) = h̄1(ω̃
1 − a) + a. Nonetheless, the trend effect

would be identified because h̃1(ω̃
1)− ω̃1 = h̄1(ω

1)− ω1 for all a.
More generally, we want to learn how the contemporaneous and trend effects combine

to produce dynamic treatment effects of the form ω1
it+ℓ − ω0

it+ℓ for ℓ > 0 for a firm i that is
first treated at time t. In the next section, we first discuss the identification of the firm’s
realized total factor productivity before discussing the identification of average treatment
effects in Section 4.

3 Recovering the Unobserved Productivity

To recover a firm’s productivity, we assume that the econometrician observes a panel of
inputs and outputs:

Assumption 3.1. The econometrician has access to the instrument set Zit = IF
it /{(ω1

is, ω
0
is, ζis)s≤t}.

Moreover, E[ϵit|Zit] = 0, and E[ηit|Zit,Mit] = 0.
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Assumption 3.1 is standard in the classical production function estimation literature,
and is justified by the assumption on the timing of the firm’s decisions.

3.1 Recovering the Productivity in the Absence of Treatment

We first review the case where Dit = 0 for all i and t, i.e., there is no treatment at all.
There are two strands of literature that use different moments to identify the production
functions. For the gross output production function, we follow GNR (Gandhi et al., 2020)
and use a first-order condition based on the profit-maximizing choice of material inputs.
For the value-added production function, we follow ACF (Ackerberg et al., 2015) method
and proxy for productivity using materials and other inputs. In both cases, we impose a
mean independence assumption on the productivity shocks. We use the lower and upper
case letters to represent logs and levels of the corresponding variables, respectively.

GNR Approach to Gross Production Functions When firms are output price takers, the
GNR approach uses the following equation for the expenditure share of materials derived
from the firm’s profit-maximizing problem:

E
[
sit − log

(
∂f0(kit, lit,mit;β)

∂mit

) ∣∣∣kit, lit,mit

]
= 0 ∀t = 1, ..., T, (4)

where f0(kit, lit,mit;β) ≡ f(kit, lit,mit, Dit = 0;β) is the log production function and sit is
the log material-cost-to-revenue-ratio. This moment condition identifies the elasticity of
output with respect to materials. To recover the other parameters of the production func-
tion and the productivity evolution process, we then use Assumption 3.1 and specialize
equation (2) to the case in which Dit = 0 for all i and t to obtain an additional moment
condition:

E[ωit(β)− h(ωit−1(β))|kit, lit, kit−1, lit−1,mit−1] = 0 ∀t = 1, ..., T, (5)

where ωit(β) = qit − f0(kit, lit,mit;β) denotes the log-productivity implied by β.

ACF Approach to Value-added Production Functions Consider the value-added pro-
duction function f0(kit, lit;β). The material mit is a strictly monotone function of ωit and
hence the non-parametric inversion ωit = g(kit, lit,mit) exists. Ackerberg et al. (2015) first
identify the non-parametric object

Φit−1(kit−1, lit−1,mit−1) ≡ E[qit−1|kit−1, lit−1,mit−1], (6)
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and use the moment condition

E [ωit(β)− h [Φit−1(kit−1, lit−1,mit−1)− f0(kit−1, lit−1;β)] |kit, lit, kit−1, lit−1,mit−1] = 0. (7)

When treatment status does not vary, the econometrician can use either set of moment
conditions to non-parametrically identify a gross or value-added production function and
a sequence of total factor productivities for each firm.

Lemma 3.1. If there is no treatment in the model, then (1) The moment conditions (4) and (5)
identify the gross production function β nonparametrically up to a constant difference; and (2) The
moment conditions (6) and (7) identify the value-added production function β nonparametrically
up to a constant difference. Moreover, h is identified nonparametrically using either method.

As discussed in Section 2.2, it is important to note that Lemma 3.1 says that the pro-
duction function is identified only up to a constant difference. Mathematically, if (F, h) is
identified by the GNR or ACF method, then (ecF, h̃) where h̃(ω) = h(ω − c) also satisfy
the GNR or ACF moment constraints for all c ∈ R.

3.2 Recovering the Productivity with Variation in Treatment Status

We now extend the identification result to the case with a policy intervention. While the
treatment can be chosen by the firm, we assume that treatment is exogenous with respect
to the unanticipated productivity shocks (ϵ1it, ϵ0it).

Assumption 3.2. (Conditional Mean-Zero Shocks) The productivity shocks (ϵ0it, ϵ1it) satisfy

E[(ϵ0is, ϵ1is)|Zit] = 0, ∀s ≥ t.

Notably, Assumption 3.2 allows treatment assignment to depend on past potential
outcomes ω0

is and ω1
is for s < t.

Because we do not model the treatment decision rule, we have to make the high-level
assumption that, as the number of firms in the data grows, we will observe infinitely
many firms remain untreated, as well as infinitely many firms remain treated6. In ad-
dition, to identify treatment effects, we will need to assume that infinitely many firms
transition into the treated group.

Assumption 3.3. There exist two periods t0, t1 such that Pr(Dit0 = Dit0−1 = 0) ̸= 0, Pr(Dit1 =

Dit1−1 = 1) ̸= 0.
6For the absorbing treatment case, it requires a positive fraction of firms receives treatment.
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Note that the periods t0 and t1 may be equal to each other.

Theorem 3.1. Suppose Assumptions 2.1- 3.3 hold. The moment condition (4) (and respectively
(6)) and

E[ωit(β)− h̄0(ωit−1(β))|Zit, Dit = Dit−1 = 0] = 0, (8)

E[ωit(β)− h̄1(ωit−1(β))|Zit, Dit = Dit−1 = 1] = 0, (9)

identify the gross (and respectively value-added) production function parameter β and the evolu-
tion process h̄d nonparametrically up to a constant difference that depends on d.

To implement the moment conditions in Theorem 3.1, we must discard the transition
periods, which might amount to a substantial fraction of the observations in a short panel.
We therefore propose some additional moment conditions that use the transition periods
under special empirical contexts, see details in Appendix D.1.

Other Structural Objects In some applications, the researcher may be interested in
other structural objects of the model, such as the transition function h+. This object is
generally not identified under the assumptions in Theorem 3.1 because we cannot simul-
taneously observe ω1

it and ω0
it, but would be identified under stronger assumptions, e.g.

the assumption in Example 2.
By recommending our approach, we do not suggest that these objects are always less

important than the treatment effects we consider in this paper. Researchers might also
be interested in simulating a counterfactual policy intervention, which would require h+

as well as a model for how firms choose their treatment status. If, however, a treatment
effect of an observed intervention is one of the researcher’s primary interests, we sug-
gest performing this component of the analysis using our methodology as a more robust
alternative to existing methods.

3.3 Revisiting Existing Methods

A simple example illustrates the limitations of two common methods of recovering pro-
ductivity in the context of a time-varying treatment. Suppose that a policy is implemented
between measurement times T0 and T0 + 1 and exogenously affects a random subset of
firms. Using the ex-post regression method, the firms’ productivities would be estimated
in the first step, and a regression would be used to estimate the average effect of the pol-
icy on productivity. Alternatively, using a model of the endogenous productivity method,
productivity could be assumed to follow a controlled Markov process in which the transi-
tion function depends on the treatment status. Under this assumption, the firm’s produc-

15



tivities could be estimated using a set of moment conditions that account for the varying
treatment status. The average treatment effect would then be computed from the esti-
mated transition function.

In general, both methods yield inconsistent estimates of the productivities under the
general framework of this paper. The ex-post regression method will be inconsistent
whenever the policy affects the evolution of productivity, while the endogenous produc-
tivity approach will be consistent only if all the primitives of the model are correctly
specified. In particular, the expected contemporaneous effect must be zero, and the firm’s
productivity at the time of treatment must be a function of its previous productivity plus
an exogenous shock.

Some of the misspecification issues can be partially resolved within the respective
frameworks. Using ex-post regression, the production function could be estimated us-
ing only pre-treatment data, while additional lags of the treatment indicator could be
included in the endogenous productivity approach to more flexibly model the evolution
of productivity. However, these solutions do not make either approach as robust as our
proposed method. These issues and alternative remedies are discussed in detail below.

The Ex-post Regression The ex-post regression method proceeds in two steps. First, it
estimates the production function and productivity evolution process ignoring the exis-
tence of the policy via (4) and (5). Second, given the estimated parameters β̂ and ĥ, it
might then regress the estimated firm-level productivity ω̂it = qit − f(kit, lit,mit; β̂) on
the treatment indicator with time- and group-effects to obtain the standard difference-in-
differences estimate.

The problem with this approach is that the realized productivity only satisfies the
moment condition (5) when ω1

it − h̄1(ω
1
it) = ω0

it − h̄0(ω
0
it) and h+(ω0

it, ω
1
it) = h̄0(ω

0
it). If the

treatment has a trend effect or a contemporaneous effect, then the estimated production
function will generally be biased.

To demonstrate the source of the specification bias, we first specialize the moment
condition to this example in the pre-treatment periods t ≤ T0. Equation (5) becomes

E[ω0
it(β)− h̄0(ω

0
it−1(β))|Z ′

it] = 0 ∀t ≤ T0.

where Z ′
it = {kit, lit, kit−1, lit−1,mit−1}. By Proposition 3.1, this moment condition iden-

tifies β and h̄0. Substituting β and h̄0 for h into (5) for t = T0 + 1 and t > T0 + 1, we
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obtain

0 = E[ω1
iT0+1 − h̄0(ω

0
iT0

)|Z ′
iT0+1]Pr(DiT0+1 = 1) + E[ω0

iT0+1 − h̄0(ω
0
iT0

)|Z ′
iT0+1

]Pr(DiT0+1 = 0), (10)

0 = E[ω1
it − h̄0(ω

1
it−1)|Z ′

it]Pr(Dit = 1) + E[ω0
it − h̄0(ω

0
it−1)|Z ′

it]Pr(Dit = 0), ∀t > T0 + 1 . (11)

In deriving these equations, we have used the fact that ωit(β) = ωDit
it because β is the

true parameter vector and the assumption that treatment status is exogenously assigned.
The second additive terms in equations (10) and (11) are zero by construction. However,
if the policy has any effect on the expected evolution of productivity, the first terms will
generally not be zero. In particular, (10) will be violated unless h+(ω0

it, ω
1
it) = h̄0(ω

0
it), while

(11) fails whenever h̄1 ̸= h̄0.
As a result, the production function simultaneously estimated from all of the moments

will be biased, with the effect that ω̂it is not consistent for ωit. This inconsistency then
biases any subsequent policy evaluation.

As a simple solution to the problem in this example, we could estimate the produc-
tion function using only observations from the periods before the policy took effect. If we
assume that the treatment does not affect the production technology, then the post-policy
productivities can be computed as out-of-sample residuals from the production equation,
e.g. ω̂it = qit − f(kit, lit,mit; β̂T0) for t > T0, where β̂T0 denotes the parameter estimates
using pre-treatment observations. Effectively, this solution uses only the moment con-
ditions in (4) and (8) to estimate the production function. By comparison, our proposed
estimator uses more observations and allows the production technology to change.

The Endogenous Productivity Method The endogenous productivity method in De Loecker
(2007) and Doraszelski and Jaumandreu (2013) includes the treatment variable in the pro-
ductivity process:

ωit = h̃(ωit−1, Dit) + ϵit.

This method solves the misspecification of the productivity process for treated and con-
trolled groups. Indeed, by defining h̄d(·) = h̃(·, d) for d = 0, 1, we can show that moment
condition (5) can be transformed into

E[ω0
it(β)− h̄0(ω

0
it−1(β))|Zit] = 0 ∀t ≤ T0, and

E[ω0
it(β)− h̄0(ω

0
it−1(β))|Zit, Dit = Dit−1 = 0]Pr(Dit = Dit−1 = 0)

+ E[ω1
it(β)− h̄1(ω

1
it−1(β))|Zit, Dit = Dit−1 = 1]Pr(Dit = Dit−1 = 1) = 0 ∀t > T0 + 1,

(12)
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and the moment condition in the first period of treatment becomes

E[ω0
iT0+1(β)− h̄0(ω

0
iT0

(β))|Z ′
iT0+1, DiT0+1 = DiT0 = 0]︸ ︷︷ ︸

Part A

Pr(DiT0+1 = DiT0 = 0)+

E[ω1
iT0+1(β)− h̄1(ω

0
iT0

(β))|Z ′
iT0+1, DiT0+1 = 1, DiT0 = 0]︸ ︷︷ ︸

Part B

Pr(DiT0+1 = 1, DiT0 = 0) = 0.
(13)

The moment conditions in equation (12) are correctly specified. In particular, by Proposi-
tion 3.1, β and h̄0 are identified from the t ≤ T0 moment equality (12), and h̄1 is identified
from the t ≥ T0 + 2 moment equality (12).

However, the moment condition for the initial treatment period (13) is misspecified.
Substituting the value of h̄0 identified from (12), Part A in (13) equals zero. However, Part
B is generally nonzero under the general evolution process (3). The transition function in
the first treatment period should be h+(ω0

it−1, ω
1
it−1), whereas in Part B of (13), the transi-

tion function is h̄1(ω
0
it−1). If either the transition function has a contemporaneous effect so

that ω0
it−1 ̸= ω1

it−1 or the expected evolution in the initial period of treatment is different
so that h+(ω0

it−1, ω
1
it−1) ̸= h̄1(ω

1
it−1), then the moment condition will not be satisfied.

To provide more specific scenarios in which the added flexibility of our framework
would be desirable, we return to the previous examples. In Example 1, potential pro-
ductivities follow parallel paths. For simplicity, we may further specialize this example
to the case in which productivity is perfectly persistent: (1) ω1

it = ω1
it−1; (2) ω0

it = ω0
it−1;

and (3) ω1
it = ω0

it + C. At time T0 + 1, the treated firm’s observed last period produc-
tivity is the untreated potential outcome ω0

iT0
. Part B of (13) then becomes E[ω1

iT0+1(β) −
ω0
iT0

(β)|ZiT0+1, DiT0+1 = DiT0 = 1]. The value of Part B is C at the true production param-
eter rather than 0, so the model is misspecified.

In Example 2, the evolution at the transition period only depends on the observed out-
come in the previous period. If we impose h+ = h̄1, then Part B of (13) equals zero and the
model is not misspecified. However, this assumption may not be satisfied in some em-
pirical contexts. For instance, suppose that the policy takes effect between measurement
times T0 and T0 +1 and that productivity evolves over shorter time intervals. In this case,
ω0
iT0

first evolves according to h̄0 and before the treated transition function h̄1 takes effect,
with the results that the expected difference between ω0

iT0
and ω1

iT0+1 is some combination
of h̄0 and h̄0. In particular, unless h̄0 = h̄1, we should expect that h̄1 ̸= h+.

A straightforward solution to this problem with Example 2 would be to include Dit−1

in h̃, which would allow the transition function during the first period of treatment to dif-
fer from both h̄0 and h̄1. Although this is in fact a complete solution to the problem in this
example, it does not achieve the same level of generality as our approach because h+ is
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assumed to depend only on the previous realized productivity. This solution would gen-
erally not yield correctly specified moment conditions under scenarios such as Example
3 in which realized productivity is not Markov (See Section 5).

4 Evaluating the Treatment Effect on Productivity

Since we only observe a firm either in the treated or non-treated state, the individual
treatment effect ω1

it − ω0
it is typically not identified. Therefore, we focus on the average

treatment effect on the treated (ATT). Identifying the average treatment effect (ATE) is
generally difficult and requires more structural assumptions. We discuss the identifica-
tion of the ATE in Appendix A.2.

The first step in our analysis is to recognize that the realized productivities are identi-
fied as a corollary to Theorem 3.1:

Corollary 4.1. Under Assumption 2.1-3.3, we can recover the realized ex-post productivity ωd
it +

ηit for firms such that Dit = d.

Since the individual effective productivity is identified, the econometrician can view
ωit as “observed” up to a mean zero random perturbation ηit. In many cases, ηit is purely
random and cannot be separated from the firm productivity. We thus omit the ηit in our
discussion below. We define the econometrician’s information set below.

Definition 2. The econometrician’s information set is IE
it = Zit ∪ {ωis}s≤t−1 ⊆ IF

it .

For ATT, we find it instructive to discuss the identification for the absorbing treatment
and non-absorbing treatment cases, separately.

4.1 ATT: Absorbing Treatment

The absorbing treatment is at the core of the literature on estimating dynamic treatment
effects (Callaway and Sant’Anna, 2021; Sun and Abraham, 2021; Athey and Imbens, 2022).
As a benchmark for analyzing ATT, we consider the absorbing policy for which the treat-
ment indicator is non-decreasing Dit−1 ≤ Dit. For any treatment that is not absorbing,
we can replace the treatment status Dit with an indicator for ever having received the
treatment to obtain a new treatment that is absorbing.7

Let ei > 1 be the first period that firm i starts to receive treatment. Since the treatment
is absorbing, when the firm i belongs to the treated group, we have Git = 1 for t = ei

7For example, Deryugina (2017) defines the treatment to be “having had any hurricane” and investigates
its impact on the fiscal cost for a county.
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and Dit = 1 for all t ≥ ei. We maintain Assumption 3.2 on the exogeneity of productivity
shocks. Let g be a subgroup of firms whose treatment effects are of interest, and ℓ ≥ 0 be
the time relative to the first treatment period. It is helpful to think of group g as a cohort
of treatment, and we may be interested in the treatment effects for different cohorts. The
ℓ-period-ahead ATT at time t for group g is given by

ATTg,ℓ = E[ω1
it − ω0

it|t = ei + ℓ, i ∈ g]. (14)

Failure of the Simple Parallel Trend Assumption Even when the treatment is not ran-
domly assigned, the difference-in-differences (DID) method allows us to identify the ATT
if a parallel trend assumption is satisfied. We first discuss the fallacy of the conventional
DID assumption, and then provide a remedy.

Assumption 4.1. (Simple Parallel Trend) The following is the simple parallel trend condition:

E[ω0
it − ω0

it−1|ei = t] = E[ω0
it − ω0

it−1|ei > t]. (15)

If condition (15) holds, then the ATTg,0 is identified as E[ωit|ei = t] − E[ωit−1|ei =

t] − (E[ωit|ei > t] − E[ωit−1|ei > t]). However, Assumption 4.1 is a high-level condition
because it is imposed on the potential productivity before and after the treatment, and it
can be hard to justify. In particular, note that from the productivity process (3), we can
derive

E[ω0
it − ω0

it−1|ei = t] = E[h̄0(ω
0
it−1)− ω0

it−1|ei = t]

E[ω0
it − ω0

it−1|ei > t] = E[h̄0(ω
0
it−1)− ω0

it−1|ei > t],
(16)

under Assumption 3.2. From (16) we see that the parallel trend condition will fail if firms
select intro treatment based on ω0

iei−1.

The Conditional Parallel Trend Assumption We note that, by further conditioning on
the value of ω0

it−1 in equation (16), we have

E[ω0
it − ω0

it−1|ei = t, ω0
it−1] = h̄0(ω

0
it−1)− ω0

it−1,

E[ω0
it − ω0

it−1|ei > t, ω0
it−1] = h̄0(ω

0
it−1)− ω0

it−1.
(17)

The two equations in (17) coincide as a result of the assumptions used to estimate the
production function and productivity process. We call this the conditional parallel trend
condition.
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This condition relies on the implicit assumption that the firm’s untreated potential
productivity continues to evolve as it would have if the firm had not been treated. This
assumes, for example, that the firm does not lose any intangible capital specific to the
untreated production technology. This assumption does not have any empirical content
when treatment is absorbing, because the untreated potential productivity is never again
relevant to any of the firm’s decisions after it takes treatment. In the more general case,
however, we must make an additional assumption.

To be concrete, we introduce a more general evolution process for ω0
it:

ω0
it = 1(Git = 0)h̄0(ω

0
it−1) + 1(Git = 1)h+

0 (ω
0
it−1, ω

1
it−1) + ϵ0it. (18)

This general framework allows the potential untreated productivity to have a different
evolution process when firms first take treatment. The conditional parallel trends condi-
tion (17) is then a direct consequence of the assumption that h+

0 = h̄0. We refer to this as
the conditional parallel trend assumption.

Assumption 4.2. (Conditional Parallel Trend) h+
0 (ω

0
it, ω

1
it) = h̄0(ω

0
it).

Identifying Treatment Effects Based on the implication of (17), we study ℓ-period-
ahead conditional average treatment effect on the treated (CATT)

CATTg,ℓ(ω) = E[ω1
it − ω0

it|t = ei + ℓ, ωiei−1 = ω, i ∈ g],

which further conditions on the pre-treatment realized productivity. By the law of itera-
tive expectation, ATTg,ℓ = E[CATTg,ℓ(ωiei−1)], and we can identify ATTg,ℓ if CATTg,ℓ(ω)

is identified.

Proposition 4.1. Under Assumption 4.2, the contemporaneous CATT is identified as CATTg,0(ω) =

E[ωiei − h̄0(ωiei−1)|i ∈ g, ωiei−1 = ω]. Consequently, the 0-period-ahead ATT is identified as
ATTg,0 = E[ωiei − h̄0(ωiei−1)|i ∈ g].

In general, the ℓ-period-ahead CATT and ATT is not identified for ℓ ≥ 1, because
we cannot recover the untreated potential outcome ω0

iei+ℓ−1. Therefore, we need further
restrictions to carry out the same derivation in Proposition 4.1. We now formalize several
assumptions that help identify the ℓ-period-ahead ATT.

For notation purpose, let h̄(ℓ)
0 be the ℓ-period productivity transition process, we can

write ω0
iei+ℓ = h̄

(ℓ)
0 (ω0

iei
, (ϵ0is)

ei+ℓ
s=ei

). We now consider a strong constraint on the productivity
shocks but relax the constraint on the shape of h̄0.
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Assumption 4.3. There is a group-time pair (g′, s) such that (i) for all firms i′ ∈ g′ that are
untreated by ℓ-periods since time s, i.e., ei′ > s + ℓ; and (ii) the conditional distribution of
(ϵ0iei , ..., ϵ

0
iei+ℓ)|(i ∈ g, ω0

iei−1) is the same as the conditional distribution of (ϵ0i′s, ..., ϵ
0
i′s+ℓ)|(i′ ∈

g′, ω0
is−1).

For treatment group g, the group-time pair (g′, s) is chosen by the econometrician to
serve as a comparison group. If Assumption 4.3 holds, firms in group g′ can serve as
the control group for the firms in the treatment group g and help identify the interested
treatment effect on productivity. To accommodate the possible nonlinearity in h̄

(ℓ)
0 (·), we

must strengthen the assumption that future productivity shocks are mean-independent
of the time of treatment.

We now present an identification result for the ℓ-period-ahead ATT in the following
proposition.

Proposition 4.2. Suppose Assumption 4.2 and 4.3 hold. Then the ℓ-period-ahead CATT is identi-
fied as CATTg,ℓ(ω) = E[ωiei+ℓ|i ∈ g, ωiei−1 = ω]−E[ωis+ℓ|i ∈ g′, ωis−1 = ω]. The corresponding
ATT is identified as ATTg,ℓ = E[CATTg,ℓ(ωiei−1)|i ∈ g], where the expectation is taken over the
conditional distribution of ωiei−1 given i ∈ g.

Proposition 4.2 requires us to match over the lagged productivity for each group g-
firms with g′-firms since time s. This is because we cannot observe the untreated shocks
ϵ0it for treated firms and the higher order moments of ϵ0it matters for the ℓ-period evolution
process h̄

(ℓ)
0 . As an example of the type of empirical application for which the matching

group-time pair (g′, s) can be determined, consider the following scenario:

Example 4. In many empirical settings, we are interested in a cohort of firms that start their
treatment in period g0: g = {i : ei = g0}. In this case, the researcher may use firms that are not
treated until period g0 + ℓ + 1 as the control: g′ = {i′ : ei′ > g0 + ℓ} and set the time s = g0.
This means that we use not-yet-treated observations in the same time window as the control group.
This choice reflects the belief that the productivity shocks of the not-yet-treated firms during the
same period are similar to the treated firms after the treatment takes place.

Intuitively, Assumption 4.3 holds if the following conditions are met. Before period g0, no firms
were treated. At time g0, firms decide whether to take the absorbing treatment. Between g0 and
g0+ℓ+1, firms cannot change their treatment status due to governmental regulations or contracts.
In this empirical setting, at the time g0, the firm makes the decision on whether the initial treatment
time ei is ei = g0 or ei > g0 + ℓ, and firms can only make treatment choices based on their
information set IF

ig0
, which does not contain information on future shocks (ϵ0ig0 , ..., ϵ

0
ig0+ℓ). This

example can be seen in many government policy reforms that gradually roll out in several phases.
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For example, the privatization of Chinese State-Owned enterprises started with an experiment
phase in 18 cities, then a phase of an additional 32 cities, and gradually rolled out to the rest of the
country.

However, if all firms can choose the initial treatment time freely after g0, then Assumption 4.3
typically fails. Firms that choose not to be treated until g0 + ℓ + 1 are likely those with higher
potential productivity (ϵ0iei , ..., ϵ

0
iei+ℓ) and, therefore, are reluctant to switch to be treated. In this

case, we can choose g′ = {all firms} and s = 2 in Assumption 4.3. In other words, we use all
firms and periods before the initial treatment period g0, and match firms on the basis of their initial
productivity ωi1.

To identify ATTg,ℓ from Proposition 4.2, we need to match a treated firm with an un-
treated firm with the same ex-ante productivity. This matching procedure can be difficult
to implement due to two reasons. First, we may not be able to find a (g′, s) pair that satis-
fies the independence restriction. Second, even if (g′, s) is found, we may not have enough
observations in group-time pair (g′, s). Moreover, if all firms are treated at period g0 + ℓ,
we cannot identify the ATTg0+ℓ+s for all s > 0. In such cases, we can rely on the stronger
assumption that productivity shocks are independent and identically distributed:

Assumption 4.4. (i) The productivity shocks satisfy ϵ0it ∼i.i.d. G
0
ϵ(·), where the i.i.d is over both

firm index i and time index t; (ii) We can find a group-time pair (g′, s) such that all firms in g′

are untreated in period-s, and there is no selection in productivity shocks: ϵ0i′s|i′ ∈ g′ ∼ G0
ϵ(·) and

ϵ0it|i ∈ g ∼ G0
ϵ(·) for all t ≥ ei.

This assumption allows us to impute the unobserved productivity shocks for group-g
firms using the distribution G0

ϵ(·). In order to implement this assumption, however, we
require an untreated group-time pair (g′, s) such that the marginal distribution of ϵ0is is
identified, e.g. a random group of firms that is ineligible for the treatment prior to time s.

Proposition 4.3. Under Assumption 4.3 and 4.4, the distribution of ϵ0it, G0
ϵ(·), is identified, and

the ℓ-period-ahead CATT for group g can be identified as

CATTg,ℓ(ω) = E[ωiei+ℓ|i ∈ g, ωiei−1 = ω]− E(G0
ϵ )

ℓ [h̄
(ℓ)
0 (ωiei−1, ϵ

0
iei
, ..., ϵ0iei+ℓ)|i ∈ g, ωiei−1 = ω],

where the second expectation is taken over the joint distribution of (ϵ0iei , ..., ϵ
0
iei+ℓ).

Proposition 4.3 motivates a simulation-based procedure to estimate ATT. This proce-
dure includes two steps. In the first step, the researcher can identify the distribution of ϵ0it,
i.e., G0

ϵ(·), for all firms. Then for each treated firm, starting from the ex-ante productivity
ωiei−1, we can draw ϵ0it from G0

ϵ , and simulate its counterfactual productivity path in ℓ
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periods ahead using h̄
(ℓ)
0 (ωiei−1, ϵ

0
iei
, · · · , ϵ0iei+ℓ). The desired ATT is simply the average of

difference between the realized productivity and the simulated counterfactual productiv-
ity for treated firms.

4.2 ATT: Non-absorbing Treatment

In some scenarios, the treatment is non-absorbing by nature. In reality, firms participate
in import, export, or R&D activities occasionally.8 We now discuss the identification of
the effects of non-absorbing treatment. Since treatment can be volatile, the individual
treatment effect can be influenced by a sequence of past treatment status9.

We specify a general Markov process for the potential productivity that admits return-
ing to the untreated state:

ω1
it = 1(Git = 0)h̄1(ω

1
it−1) + 1(Git = 1)h+

1 (ω
0
it−1, ω

1
it−1) + 1(Git = −1)h−

1 (ω
0
it−1, ω

1
it−1) + ϵ1it,

ω0
it = 1(Git = 0)h̄0(ω

0
it−1) + 1(Git = 1)h+

0 (ω
0
it−1, ω

1
it−1) + 1(Git = −1)h−

0 (ω
0
it−1, ω

1
it−1) + ϵ0it.

(19)

Compared to (3), equation (19) allows the firms to turn on and off the treatment across
time and allows much more flexible transition dynamics when firms change their treat-
ment status. Since the identification of production function and realized productivity
does not rely on the Git ̸= 0 periods, Theorem 3.1 still holds. The key difference is the
definition of treatment effect and its identification.

Dynamic treatment effects are usually not identified under the context of volatile treat-
ment. Instead, we focus on a particular category of treatment effects for firms that switch
their treatment statuses at time g and maintain their new statuses for ℓ periods. Here we
abuse the notation to use g to both denote the treatment cohort group and the group’s
initial treatment time. Formally, we define ATT+

g,ℓ and ATT−
g,ℓ as the ℓ-period persistent

treatment for firms that, at time g, switch into or out of treatment, respectively:

ATT+
g,ℓ = E[ω1

ig+ℓ − ω0
ig+ℓ|Dig−1 = 0, Dig = ... = Dig+ℓ = 1],

ATT−
g,ℓ = E[ω1

ig+ℓ − ω0
ig+ℓ|Dig−1 = 1, Dig = ... = Dig+ℓ = 0].

(20)

We first show that the 0-period ahead treatment effect is identified under the condi-
8In the data on Taiwanese electronics industry employed by Aw et al. (2011), the annual transition prob-

ability from only R&D performer in year t to R&D performer in year t+1 is around 0.57, and the probability
from only exporter in year t to exporter in year t+1 is around 0.78. In the Spanish data used by Doraszelski
and Jaumandreu (2013), slightly more than 20% of firms are occasional performers that undertake R&D
activities in some (but not all) years.

9See Heckman and Navarro (2007) for a formal definition of the general dynamic treatment effects.
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tional parallel trend assumption for both negative and positive switchers.

Proposition 4.4. Under Assumption 4.2, the 0-period-ahead positive/negative switching ATT
effects at time g are identified as ATT+

g,0 = E[ωig − h̄0(ωig−1)|Dig−1 = 0, Dig = 1], and ATT−
g,0 =

E[ωig − h̄1(ωig−1)|Dig−1 = 1, Dig = 0].

Similar to the absorbing-treatment case, evaluating the ℓ-period-ahead ATT requires
an additional structural assumption on the exogeneity of shocks.

Assumption 4.5. There is a cohort group g′ such that all firms i′ such that i′ ∈ g′ are untreated
within ℓ periods after period g′, i.e., Dig′−1 = Dig′ = ... = Dig′+ℓ = 0. Moreover, the condi-
tional distribution of (ϵ0ig, ..., ϵ0ig+ℓ)|(i ∈ g, ω0

ig−1) is the same as the conditional distribution of
(ϵ0i′g′ , ..., ϵ

0
i′g′+ℓ)|(i′ ∈ g′, ω0

ig′−1).

Assumption 4.5 generalizes Assumption 4.3 to the non-absorbing treatment case using
firms that are not treated between g′ and g′+ℓ. Since treatment is not absorbing, we further
need to condition on the lagged treatment Dit−1.

Proposition 4.5. Suppose Assumption 4.2 and 4.5 hold. The ATT+
g,ℓ is identified by the same

expression as the ATTg,ℓ in Proposition 4.2.

The proof of Proposition 4.5 is the same as the proof of Proposition 4.2 and is hence
omitted here. Assumption 4.5 has a similar restriction as Assumption 4.3. However,
if firms are allowed to change the treatment status every period, then the g′-matching
cohort is very hard to find: The ℓ-period untreated firms are likely to face a very high ϵ0ig′ ,
and hence these firms are not a good match for the g-cohort firms.

However, Assumption 4.5 is likely to hold for treatment that must be maintained for
several periods. For example, suppose that the treatment decision is whether to use a new
technology and that the new technology is not available before the time g. If contractual
obligations or the fixed cost of switching technology effectively guarantee that the firm’s
treatment status will persist for at least ℓ periods, we can use all firms at g′ = 0 as the
match group.

5 Discussion of the Potential Productivity Process (3)

Our approach can be succinctly described as embedding production function estimation
into a dynamic potential outcome framework. This approach is new to the literature.
Moreover, we argue that our approach is not merely a relabeling of familiar terms. The
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key distinction is that the previous literature has progressed by making structural as-
sumptions on the realized productivity. In contrast, we have shown that estimates of the
ATTs will be more robust to misspecification when analogous assumptions are instead
placed on the potential productivities.

By way of comparison, if we were to restrict ourselves to a model of realized produc-
tivity, and wanted to allow for more flexible dynamics in the transition period, we could
simply replace Dit with (Dit, Dit−1) in h:

ωit = h(ωit−1, Dit, Dit−1) + ϵit

= h̄0(ωit−1)1(Dit−1 = Dit = 0) + h̄1(ωit−1)1(Dit−1 = Dit = 1)

+ h+(ωit−1)1(Dit−1 = 0, Dit = 1) + ϵit .

(21)

This model for realized productivity is appealing since it results in the same moment
conditions (8), (9) for estimating the production functions. In fact, it implies an additional
moment condition for the initial treatment period because (21) asserts that realized pro-
ductivity is Markovian, while the more general potential productivity process (3) does
not. We first argue that the Markov assumption on realized productivity may not be
justified and, second, that it is not necessary to identify causal effects.

Markov Assumption The realized productivity under (21) is a controlled Markov pro-
cess. The transition probability only depends on the values of ωit−1, Dit−1 and Dit but not
ωis for s < t−1. However, the realized productivity under the potential productivity pro-
cess can be non-Markovian. To illustrate this, we consider the independent productivity
paths from Example 3. Suppose firm i first becomes treated at time t and its productivity
in period t is therefore equal to h+(ω0

it−1, ω
1
it−1) + ϵ1it. By assumption, ϵit is independent of

past potential productivities, so this term cannot be the source of the non-Markov behav-
ior. In addition, ω1

it−1 is assumed independent of ω0
it−1 in this example. On the other hand,

the treatment indicator may be correlated with additional lags of the realized productivity
ω0
is for s < t−1 conditional on ω0

it−1. For instance, the treatment indicator would be corre-
lated with additional lags of realized productivity if firms anticipate transitioning to the
treated state more than one period into the future due to a series of negative untreated
productivity shocks. More generally, the counterfactual productivity can be correlated
with ω0

is for s < t− 1 either because the past productivity shocks (ϵ0is, ϵ1is) are correlated or
because initial productivities ω0

i0 and ω1
i0 are correlated.

Indeed, it is perhaps easier to enumerate the situations in which the realized produc-
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tivity is Markov rather than to describe the ways in which realized productivity might not
be Markov. Notably, if ω1

is is unknown to the firm prior to treatment or has a degenerate
distribution conditional on ω0

it−1, then the realized productivity will exhibit the Markov
property.10 When these conditions are not satisfied, the Markov assumption is likely to be
violated. In turn, because inflexible inputs can be correlated with past realizations of pro-
ductivity conditional on ωit−1, the moment condition based on the Markov assumption
will be violated in the transition period. Moreover, without additional assumptions, the
moment condition cannot be corrected by including additional observables in the transi-
tion function or in the set of instruments.11

Causal Effects Using the controlled Markov process (21) an ATT or ATE can be com-
puted after identifying the production function and all of the productivity transition func-
tions. Using our more general framework, additional assumptions would be required to
identify an ATE via this approach because h+ is generally not identified in our more gen-
eral framework. For instance, we can identify the unknowns in (21) under the assump-
tions of Example 2. Then h+ is identified by the following moment condition

E[ωit(β)− h+(ωit−1(β))|Zit, Dit = 1, Dit−1 = 0] = 0.

Along with the conditional parallel trend Assumption 4.2, we can derive the instanta-
neous conditional average treatment effect as

E[ω1
it − ω0

it|ωit−1] = h+(ωit−1)− h̄0(ωit−1). (22)

This is an appealing result since the average treatment effect is identified even if the treat-
ment decision Dit is dependent on ωit−1. In contrast, recall that, under our more general
potential productivity process in (3), we are only able to identify the average treatment
on the treated.

Of course, this additional identifying power comes at the cost of generality. The poten-
tial productivity process (3) allows firms’ decisions to depend on additional unobserved
potential productivity, while (21) essentially assumes that the two potential productivities
coincide so that there are no unobservable variables in the decision process. Indeed, if one
were to impose any type of assumption that permits identification of h+, then it would

10The transition function may not be stationary if the distribution of the counterfactual productivity ω1
it

depends on t, but the process will be Markov in this case as long as the conditional distribution of ω1
it−1

given that the firm chooses treatment does not depend on ω0
is for s < t− 1. Nonstationarity can be accom-

modated by more flexibly estimating the transition function h.
11The underlying issue is a form of essential heterogeneity (see, for example, Heckman et al., 2006).
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be possible to identify the ATE.12 The remarkable fact, however, is that some treatment
effects of interest can be identified without identifying all of the primitives of the model.

6 Empirical Study

6.1 Background

The rise of technologies such as artificial intelligence, robotics, cloud computing and big
data analytics have ushered in a new era of digitalization in firms’ production activities.
This transformation has sparked significant interest among researchers and policymak-
ers due to its potential for productivity growth. In this section, we apply our proposed
method using a firm-level dataset from China to investigate the impact of manufacturing
firms’ production digitalization on productivity growth.

Production digitalization refers to the integration of utilization of advanced digital
technologies and tools throughout the entire production process. For a long time, China’s
manufacturing has concentrated on making low-end, labor-intensive goods. Against this
backdrop, the Chinese government has been intensively investing in infrastructure in in-
formation and communication technologies. In 2015, China issued the Made in China 2025
as a national development plan and a comprehensive set of industrial policies to further
develop China’s manufacturing sector. In response to these efforts, Chinese manufactur-
ing firms have been actively investing in digital technologies to upgrade their production
processes.

6.2 Data

The empirical study combines two datasets. The first dataset is publicly traded manufac-
turing firms in the Chinese stock market between 2005 and 2019. This dataset is collected
by CSMAR (similar to Compustat in the US) and contains rich information on firms’ pro-
duction activities. The second dataset is the annual reports for China’s A-shares manufac-
turing firms downloaded from the websites of the Shanghai Stock Exchange, Shenzhen
Stock Exchange, and CNINF13 between 2005 and 2019. We use the texts in the annual
reports to construct the variable of production digitalization. Our data covers the period
in which many Chinese firms started to adopt production digitalization as an important

12We further discuss the identification of average treatment effect in Appendix A.2.
13CNINF (http://www.cninfo.com.cn/new/index) is a large-scale professional website that dis-

closes the announcement information and market data of more than 2500 listed companies in Shenzhen
and Shanghai.
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development strategy. Due to the popularity of digitalization among stakeholders and
policymakers, we believe that firms have adequate incentive to record any digitalization
of their production process in their annual reports to shareholders.

We construct the measure of production digitalization by combining text analysis tools
with manual reading of the annual reports of listed manufacturing firms. Based on a set of
digitalization-related technologies (e.g., big data analytics, artificial intelligence, internet
of things (IoT), cloud computing, and robotics), we first extract the digitalization-related
keywords and manually read the texts around the keywords in each annual report. Fol-
lowing Zhai et al. (2022), we hired two research assistants independently to manually
read the extracted texts to determine whether the firm undertakes production digital-
ization in each year. In particular, as an improvement of the existing method, we have
excluded scenarios in which the firm only describes the development of digitalization as
a trend in its own industry or as an introduction of the national development strategy.
The detailed procedures and several concrete examples of texts on the identified produc-
tion digitalization are presented in Appendix C. For the empirical purpose, we define a
dummy variable Digitit to capture the status of production digitalization of firm i in year
t. The variable Digitit takes the value of one for years after year t if firm i’s initial year of
production digitalization is identified as year t. Otherwise, Digitit is equal to zero. Note
that by the construction of Digitit, the treatment is absorbing, fitting the context of our
econometric framework.14

Figure 2 shows the strong growing trend of production digitalization within the sam-
ple period. The number of firms that have adopted production digitalization was zero
before 2011, but increased rapidly to 408 in 2018. This is consistent with the rapid devel-
opment of the digital economy and the building of infrastructure for information tech-
nologies in China during this period. Note that there has been an increase in the number
of non-digitalized firms. This is because more manufacturing firms were listed during
the sample period, while firm exit is relatively rare. The growing trend of production
digitalization in our sample provides a suitable empirical setting to employ our proposed
method to investigate the productivity effects of production digitalization.

14One may argue that the level of digitalization may change over time. We acknowledge this limita-
tion and leave the investigation of the dynamic treatment effect for continuous treatment variables as an
important future research direction.
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Figure 2: Trend of Production Digitalization
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To account for industrial heterogeneity and keep an sufficient number of observations
in each industry, we classify firms according to the first digit of the industry code. The
estimation sample has 14,438 observations (13,171 untreated and 1,267 treated), covering
seven main manufacturing industries. We provide the summary statistics in Appendix C.

6.3 Identification Assumptions and Estimation Procedures

6.3.1 Identification Assumptions

Our identification strategy relies on the conditional parallel trends (Assumption 4.2),
which asserts that, if the firm had not started production digitalization, its counterfactual
productivity would have continued to evolve according to h̄0. However, we emphasize
that, because we assume the adoption of digital technologies is an absorbing treatment
state, the conditional parallel trend assumption is untestable. We cannot observe the evo-
lution of counterfactual productivity once a firm starts production digitalization, and the
counterfactual productivity is not relevant to any future actions or outcomes of the firm.

In the present application, we also invoke Assumption 4.3 to identify the treatment
effect of production digitalization on productivity. Essentially, this assumption requires
that for each treated firm, we can find a comparison group that faced the same distribu-
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tion of untreated productivity shocks ϵ0it conditional on the firm’s pre-adoption produc-
tivity. Because a negligible fraction of firms reported digitalization prior to 2011, we use
all firms in the same industry during 2005-2010 as the comparison group for treated firms.

To investigate this assumption, we compare the (unconditional) distribution of pro-
ductivity shocks in 2005-2010 with the distribution of productivity shocks for untreated
firms in 2011-2018. The suggestive evidence is shown in Appendix C.3. Figure C.1 dis-
plays the empirical cumulative distributions for these two groups by industry. Visual
inspection strongly suggests that the difference between them is small, but we also con-
duct Kolmogorov-Smirnov (K-S) tests to test the equality of the two distributions in each
industry. The results are reported in Table C.3. The K-S test statistics are small, and the
p-values are generally large, indicating support for Assumption 4.3. The exception is the
metal processing industry, which appears to have experienced a weaker distribution of
untreated productivity shocks after 2010.15

6.3.2 Production Function Estimation

We employ the Ackerberg et al. (2015) method to estimate a value-added production func-
tion, with the extension of the potential productivity process (3). We use the translog
specification as the benchmark model:

yit = βtt+ βllit + βkkit + βlll
2
it + βkkk

2
it + βlkkitlit + ωit + ηit, (23)

where yit, lit, kit are the logged value-added, logged number of employees, and logged
capital, respectively. Any exogenous trends in the productivity are captured by βtt, and
ηit is an exogenous idiosyncratic ex-post output shock. As we have mentioned, China has
been actively investing in infrastructure in information and communication technologies
with the goal of developing the manufacturing sector. The exogenous time trend in the
production function may capture the common trend in productivity growth. In light
of our econometric framework, the realized productivity ωit can be expressed as ωit =

Digitit×ω1
it+(1−Digitit)ω

0
it, where Digitit ∈ {0, 1} is the defined indicator for production

digitalization. We assume h̄0 and h̄1 are cubic polynomials of the potential productivity
with and without digitalization:

ωd
it = ρd0 + ρd1ω

d
it−1 + ρd2(ω

d
it−1)

2 + ρd3(ω
d
it−1)

3 + ϵdit, d ∈ {0, 1}, (24)

15Given that the number of treated observations in the metal processing industry is relatively small, our
main results stay stable if we remove the metal processing industry.

31



where d = 1 indicates the treated firms that have adopted production digitalization in the
sample period, and d = 0 represents the control firms that have never started production
digitalization.

Since the productivity process in the period of adoption is not modeled by (24), we
drop this period when estimating the production function.16 Guided by Theorem 3.1, we
construct moment conditions using the instruments of Ackerberg et al. (2015). To account
for the industrial heterogeneity in production technologies, we estimate the production
functions and productivity evolution processes separately for each industry. The estima-
tion results for the production functions are presented in Table C.4. Notably, the estima-
tion result shows a significant positive time trend in the production function, indicating
rapid technological progress in the Chinese manufacturing sector. This is also consistent
with China’s intensive investment in infrastructure and information and communication
technologies.

In the current specification, we do not allow the production function to vary with
treatment status in addition to productivity. As discussed in previous sections, we can in
principle allow production digitalization to affect the production technologies, but we do
not implement this feature in our empirical application because we have relatively few
observations of firms treated in consecutive periods in most industries (see Table C.2).

6.3.3 Estimation of the Effects of Production Digitalization on Productivity

After the estimation of the production function, we compute the productivity and recover
the productivity evolution process. Based on the productivity estimates and the recovered
productivity process, we use the proposed simulation-based approach to estimate the
firm-specific treatment effects by constructing multiple counterfactual productivity paths
for each firm. To simulate counterfactual productivity paths for treated units, we draw
productivity shocks ϵ0it from the untreated observations before the year 2011 when almost
no firms were digitalized.

Following the identification argument for the CATT and the simulation-based method
in Proposition 4.3, we propose to study the following firm-specific ℓ-period treatment ef-
fect TTiℓ ≡ ωiei+ℓ−EG0

ϵ
[h̄

(ℓ)
0 (ωiei−1, ϵ

0
ei
, ..., ϵ0ei+ℓ)]. This firm-specific object allows us to study

the heterogeneity of treatment effect across firms that would be missed in the aggregated
ATT estimates. Moreover, the TTiℓ is easier to calculate than the CATT, which requires
taking averages of TTiℓ across firms that have the same lagged productivity. Specifically,
for firm i that started production digitalization in year ei, we estimate the firm-specific

16An alternative way is to add a dummy variable indicating the transition period. Our results are robust
to this alternative specification.
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ℓ-period treatment effects of production digitalization as

T̂ T iℓ = ω̂iei+ℓ −
1

M

M∑
m=1

ω̂0
iei+ℓ(m), (25)

where ω̂0
iei+ℓ(m) is the unrealized potential productivity obtained through the simulated

productivity path m, and M is the total number of counterfactual productivity paths. In
our estimation, we set M to be 100. After experimentation, we noticed that the TT es-
timate is sensitive to the outliers in the distribution of potential productivity shocks ϵ0it.
To deal with this problem, instead of drawing from the non-parametric distribution of
productivity shocks, we exclude the outliers of productivity shocks by discarding values
smaller than 1st percentile or greater than 99th percentile and assume a Gaussian distribu-
tion for the productivity shocks: ϵ0it ∼ N (0, σ2

ϵ ). The standard deviation σϵ is estimated as
the sample analog.

Based on the estimated firm-specific treatment effects, we then compute group-specific
treatment effects. We consider two types of group-specific treatment effects: the first is the
dynamic treatment effects, which are obtained by averaging T̂ T iℓ by period ℓ; the second
is the industrial treatment effects, which are computed by averaging T̂ T iℓ by industries.

Due to the concern for an overly small sample size, we set ℓ to be 0 to 4. We use the
block-bootstrap to construct the confidence interval for the group-level ATT estimates. In
particular, we resample observations for each industry by firm-level clusters and repeat
the two-step estimation procedure. Considering that different industries have distinct
levels of production digitalization, we bootstrap the sample by industry-level strata of
treated firms and untreated firms.

6.4 Empirical Results

6.4.1 Group-specific Average Treatment Effects

Dynamic Average Treatment Effects We first report the estimation results of dynamic
treatment effects in Table 1.17 We find positive effects of production digitalization on pro-
ductivity in from period 0 to period 2, but slightly negative treatment effects on produc-
tivity in periods 3 and 4. In aggregate, the average effect of production digitalization on
productivity is around 0.035. Notably, none of the estimates are statistically significant at
the 10% significance level, which means that on average production digitalization has not
caused significant productivity growth among these Chinese manufacturing firms. The

17The estimated parameters for the translog production function are reported in Appendix C.4.
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large standard errors suggest that there is substantial variation in the treatment effects of
production digitalization on productivity. This motivates us to further explore firm-level
treatment effects of production digitalization on productivity in Section 6.4.2.

Table 1: Treatment Effects on Productivity

Periods
After Digitalization ATT SE Treated Obs.

0 0.069 0.490 330
1 0.028 0.653 219
2 0.036 0.723 140
3 -0.040 0.706 94
4 -0.007 0.817 59

Total 0.035 0.628 842

Note: The production function is specified as translogged production functions. For
each firm, 100 counterfactual productivity paths are simulated. Standard errors are
obtained by bootstrapping 500 times.

Industrial Average Treatment Effects Table 2 reports the industry-level treatment effect
and its contribution to the overall treatment effect in the sample. We obtain the overall
treatment effect of production digitalization by averaging over all observations. Note that
we do not report the dynamic treatment effect for each industry due to the small sample
size. The industry of equipment manufacturing (ÂTT=0.062) and electronics manufac-
turing (ÂTT=0.193) have the highest ATT of productivity, contributing around 36.9% and
106.2% to the sample’s overall ATT, respectively. In contrast, the chemical synthesis in-
dustry shows the lowest ATT of productivity (ÂTT=-0.157), accounting for -43.4% of the
sample’s overall ATT. The industrial heterogeneity reflects that firms obtain different pro-
ductivity gains from adopting production digitalization. The finding that production dig-
italization tends to have larger positive productivity effects on manufacturing industries
like equipment, electronics, and healthcare may be due to their intricate processes and
high technological intensity. The integration of digital technologies into these processes
can lead to substantial efficiency gains, precision improvements, and customization op-
portunities. In contrast, industries like print & paper and food & beverage might have
comparatively simpler operations that may not benefit as significantly from digitaliza-
tion.
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Table 2: Industry-level Treatment Effects on Productivity

Industries Mean SE Contribution Treated Obs.
Equipment Manufacturing 0.062 0.677 106.2% 508
Electronics Manufacturing 0.193 0.422 36.9% 57
Healthcare Manufacturing 0.063 0.363 10.2% 48
Print & Paper 0.023 0.429 2.7% 35
Food & Beverage -0.004 0.531 -0.6% 53
Metal Processing -0.061 0.520 -12.1% 59
Chemical Synthesis -0.157 0.710 -43.4% 82
Total 0.035 0.628 100% 842

Note: The contribution of each industry is calculated as the ratio of sample-share-
weighted treatment effects to the average treatment effects in the whole sample.

Comparison with Ex-post Regressions To emphasize the difference between our method
and the existing method, we also estimate the treatment effects on productivity using the
ex-post regression method. We estimate the following two-way fixed effects model:

ω̂it = δDigitit + ρ1ω̂it−1 + ρ2ω̂
2
it−1 + ρ3ω̂

3
it−1 + λi + λt + uit, (26)

where ω̂it is the productivity estimate for firm i in year t, and Digitit is the dummy vari-
able indicating production digitalization. The parameters λi and λt represent the firm
and year fixed effects, respectively. The error term is uit. The parameter δ is usually inter-
preted as the treatment effects of production digitalization on productivity (e.g., Liu and
Mao, 2019).

We follow the estimation strategy of an ex-post method to estimate the productivity
and run the regression as specified in equation (26). The results are presented in Table 3.
We experiment with three ways of estimating the production function and productivity.
The first productivity process we specify is an exogenous productivity process without
including the information on digitalization. Specifically, the productivity process is as
follows:

ωit = ϱ0 + ϱ1ωit−1 + ϱ2ω
2
it−1 + ϱ3ω

3
it−1 + εit. (27)

In the other two productivity processes, we specify an endogenous productivity process
by including the variable of production digitalization in the productivity process:

ωit = ϱ̃0 + ϱ̃1ωit−1 + ϱ̃2ω
2
it−1 + ϱ̃3ω

3
it−1 + δ̃Digitit + εit, (28)

and estimate the production function either using the entire sample or excluding the tran-
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sition period. After obtaining the productivity estimates, we then estimate equation (26),
experimenting with controlling for different lagged productivity terms.

The results are reported in Table 3. The estimated coefficient of Digitit is robustly neg-
ative and significant in various specifications. In our empirical context, if the researcher
interpreted the estimated coefficient to be the productivity impacts of production dig-
italization, she would conclude that productivity digitalization has led to a significant
productivity decline in the sample period. As we have illustrated, it is not a surprise that
the logical inconsistency underlying the ex-post regression method can lead to misleading
empirical results.

Table 3: Productivity Effects Estimation Results Ex-post Regression Methods

Dependent var.: ω̂a
it Dependent var.: ω̂b

it Dependent var.:ω̂c
it

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)
Digitit -0.146∗∗∗ -0.102∗∗∗ -0.103∗∗∗ -0.150∗∗∗ -0.104∗∗∗ -0.104∗∗∗ -0.164∗∗∗ -0.130∗∗∗ -0.134∗∗∗

(0.034) (0.031) (0.031) (0.034) (0.031) (0.031) (0.037) (0.041) (0.041)
ω̂it−1 0.434∗∗∗ 1.286∗∗∗ 0.437∗∗∗ 1.286∗∗∗ 0.437∗∗∗ 1.112∗∗∗

(0.009) (0.130) (0.009) (0.128) (0.010) (0.114)
ω̂2
it−1 -0.042∗∗∗ -0.042∗∗∗ -0.034∗∗∗

(0.006) (0.006) (0.006)
ω̂3
it−1 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000)
N 11584 11584 11584 11584 11584 11584 11252 10974 10974
R2 0.996 0.997 0.997 0.996 0.997 0.997 0.996 0.997 0.997

Note: ω̂a
it is estimated using an exogenous productivity process, ω̂b

it is estimated using an endogenous
productivity process incorporating the digitalization variable for the whole sample, and ω̂c

it is obtained
through estimating the endogenous process but dropping the switching period. All regressions include
firm and year-fixed effects. Standard errors are in parentheses. ∗∗∗ p < 0.01.

6.4.2 Firm-specific Treatment Effects

In Figure 3, we display the kernel density of the firm-specific treatment effects in differ-
ent periods after production digitalization. The large variation in productivity gains may
reflect the differences in firms’ organizational efficiency in building the new digital pro-
duction technology and the learning ability to harness the new digital technology in the
production process.

The density of firm-specific treatment effects (T̂ T iℓ) is more dispersed and appears to
shift to the left from period zero (ℓ = 0) to four periods after digitalization. This indicates
that production digitalization tends to have smaller or more negative productivity effects
over time for many firms. However, the increased dispersion indicates that firms’ ex-
periences with production digitalization also become more strongly differentiated. This
is consistent with the observation that the success rate of digital transformation is low

36



(Bughin et al., 2019), and also largely supports the theory that firms may encounter or-
ganizational or technological barriers in the process of upgrading their business practices
and the skills of the workforce in order to fully harness the new technology (Taylor and
Helfat, 2009; Feigenbaum and Gross, 2021). However, as production digitalization has
large negative productivity effects for a non-negligible portion of firms, the arithmetic
mean of digitalization on productivity remains negative in later periods.

Figure 3: Firm-specific Treatment Effects of Production Digitalization on Productivity
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Note: This figure shows the probability density of firm-specific treatment
effects of digitalization on productivity. Firm-specific treatment effects on
productivity are obtained by simulating 100 counterfactual productivity
paths for each treated observation.

Next, we examine the average treatment effects for different levels of productivity
prior to production digitalization. To this end, we construct 5 productivity bins by split-
ting the productivity evenly into 5 groups based on the percentiles of the productivity.
As time evolves, the productivity growth caused by production digitalization of the low-
productivity firms changes from positive to negative. In contrast, the productivity gains
for high-productivity firms tend to be larger in all periods than low-productivity firms.

We further examine the statistical significance for the positive correlation between ini-
tial productivity ω̂0

iei−1 and firm-specific treatment effects on productivity T̂ T iℓ. In the
regression of T̂ T iℓ against ω̂0

iei−1, we control industry and year-fixed effects to account for
the industry- and year-specific factors that may affect the impact of production digitaliza-
tion on productivity (see Table 4). Except for period 0, the regression coefficients of ω̂0

iei−1
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are positive. In particular, the regression coefficient is statistically significant for periods
2, 3, and 4.

The fact that more productive firms are likely to receive more productivity gains than
less productive firms implies that the application of digital technologies in the produc-
tion process leads to a higher dispersion of productivity. As productivity is essentially a
residual in the production function, it may represent many factors that may affect the out-
put conditional on quantities of capital and labor input. For example, productivity may
be positively correlated with a larger stock of intangible assets including human capi-
tal (Bowlus and Robinson, 2012) and/or innovation capital (Hall et al., 2010), as well as
managerial practices (Bloom et al., 2016). From this perspective, our results echo a series
of findings that the productivity of firms with better management practices grow more
rapidly during the episode of information technology (IT) investment in the US (Bloom
et al., 2012), so do firms with intangible assets that are complementary to the IT (Bresna-
han et al., 2002).

Figure 4: Initial Productivity and the Dynamic Effects of Digitalization on Productivity
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Note: the horizontal axis indicates the periods after production digitalization. The initial pro-
ductivity is normalized by subtracting the industry-level average productivity to facilitate the
cross-industry comparison.
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Table 4: Initial Productivity and Firm-specific Treatment Effects on Productivity

(1) (2) (3) (4) (5)
T̂ T i0 T̂ T i1 T̂ T i2 T̂ T i3 T̂ T i4

ω̂0
iei−1 -0.012 0.021 0.191∗∗ 0.192∗∗∗ 0.203∗

(0.035) (0.060) (0.086) (0.070) (0.114)
N 330 219 140 94 59
R2 0.111 0.114 0.185 0.284 0.283

Note: All regressions include industry- and year-fixed effects. Standard errors are in
parentheses. ∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

7 Conclusion

This paper generalizes standard production function estimation methods by incorporat-
ing a binary treatment that affects the evolution of firm-level productivity and production
technology. As a theoretical framework, this generalization illuminates potential issues
when we identify the parameters of a model with both structural and reduced-form fea-
tures. As a practical tool, our framework suggests a robust method of estimating the
effect of treatment on firm-level productivity that only makes the necessary assumptions
to identify the treatment effect and avoids common specification issues with regression-
based approaches.

Equivalently, our framework can be viewed as a generalization of the dynamic poten-
tial outcome framework to a setting in which the outcome is not directly observed, but
must be inferred through the lens of a model. In our case, the outcome of interest is a to-
tal factor productivity, which must be inferred under additional assumptions about firm
behavior. From either perspective, the goal of the framework is to reconcile the sets of
assumptions required to infer the outcome and identify a treatment effect.

The discussion in this paper exclusively pertains to treatment effects on total factor
productivity because this setting describes much of the recent literature, but our approach
generalizes to other settings. We leave these alternatives and extensions for future work.
Some natural alternatives would involve estimating total factor productivity using other
means, for instance, using cost shares to estimate input elasticities of output and extract-
ing the residual from the logged output regression as a measure of log-productivity. Com-
pared with our baseline model, this alternative makes additional assumptions about the
firm’s optimizing behavior and relaxes assumptions about the evolution of productivity.
It could be implemented in the same spirit as our approach by separately estimating cost
shares in the treated and untreated state, although some assumptions would be required
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to estimate the missing counterfactual when treatment is not exogenous. In this paper, the
Markov assumption on the potential productivity process provides additional moments
to estimate the production function as well as permits matching treated and untreated
firms on the basis of their lagged productivities. Without assuming a Markov productiv-
ity process, some other assumptions would have to fulfill this second role.

Other alternatives might consider factor-augmenting productivity instead of, or in ad-
dition to, total factor productivity. Unless the alternative productivity measure is directly
measured, such as value-added per hour of labor, these alternatives would most likely
entail adaptations of the moment conditions used to recover the outcome. Again, if the
new productivity measure is not assumed to be Markov, another assumption would have
to be invoked to estimate the missing counterfactual when treatment is endogenously
assigned.

Extensions such as allowing for multiple levels of treatment could also be routinely
incorporated by applying our binary treatment approach to pairwise differences in the
levels of treatment. Other extensions are less obvious but no less desirable in some cir-
cumstances, such as accommodating a continuous treatment variable.

As an example of an application of our baseline methodology, we ask whether firm-
level data can explain the apparent lack of a productivity revolution in aggregate pro-
ductivity measures following the introduction of artificial intelligence technologies. Con-
sistent with the macro-level data, we find positive but statistically insignificant effects of
production digitalization on productivity. However, our analysis uncovers substantial
heterogeneity across firms and industries, as well as over time. Specifically, ex-ante more
productive firms tend to enjoy greater productivity gains three to four years after adopt-
ing new digital technologies. In sharp contrast, we find significantly negative effects of
digitalization on productivity using regression-based methods that mimic existing ap-
proaches.
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Appendices

A Connection to the Dynamic Treatment Effect

A.1 The No-Anticipation and Sequential Randomization Condition

We now briefly connect our method to the dynamic treatment effect literature (Abbring
and Heckman, 2007). There are two key conditions in the dynamic treatment effect liter-
ature: No-anticipation condition (NA) and the Sequential randomization condition (SR).
Since our framework combines both the potential outcome model and the structural equa-
tion model, we can use the structural model to verify whether NA and SR conditions hold
or not. Following the notation in Abbring and Heckman (2007), we let Dt

i = (Di1, ..., Dit),
and ωdt

i = (ωd
i1, ..., ω

d
it) for d = 0, 1. We state the NA condition in our framework.

Assumption A.1. (NA) Let DT
i and D̃T

i be two treatment sequence such that Dt
i = D̃t

i for any
t ≤ T . The no-anticipation condition holds if the potential (ω0

it, ω
1
it) generated under DT

i coincides
with the potential (ω̃0

it, ω̃
1
it) generated under D̃T

i for all t ≤ T .

The no-anticipation condition says that if two sequences of treatment coincide up to
time t, then the potential productivity up to time t should also coincide. No-anticipation
is the crucial assumption for analysis of dynamic treatment effect (Sun and Abraham,
2021).

Given the Markovian evolution process (3), NA Assumption A.1 holds as long as there
is no anticipation in the productivity shocks: The shock sequence (ϵ0is, ϵ

1
is)s≤t under Dt

i

coincides with the shock sequence (ϵ̃0is, ϵ̃
1
is)s≤t under D̃t

i . We view Assumption A.1 as a
weak requirement since the shocks to productivity process are usually assumed to be
unexpected by firms in the productivity estimation literature.

Another condition is the sequential randomization condition (Robins, 1997; Gill and
Robins, 2001; Lok, 2008), which says that future potential outcomes are conditional inde-
pendent of the current treatment status. Sequential randomization is crucial to the iden-
tification of average treatment effects. We state the firm’s SR condition in our framework.

Assumption A.2. (SR-F) Dit+1 ⊥ (ω1
is, ω

0
is)s≥t|IF

it holds for all t.

We call Assumption A.2 the sequential randomization condition for firms since we
condition on the firms’ information set. This is slightly different from the traditional
sequential randomization condition in Gill and Robins (2001), where they are conditional
on the econometrician’s information set.
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Our structural model implies that Assumption A.2 holds. Indeed, from the firm’s
dynamic optimization behavior, we know Dit+1 is a function of IF

it , denoted by Dit+1 =

g(IF
it ). Then given the information set IF

it , Dit+1 is a degenerative variable, and thus As-
sumption A.2 holds. When the treatment variable is externally imposed, and the assigner
randomizes the treatment up to the firm’s knowledge, i.e., Dit+1 = g̃(IF

it , ηit) for some ηit

independent of (ω1
is, ω

0
is)s≥t, then SR-F also holds.

Now, suppose the treatment is absorbing, and the firms can only choose the treatment
status Die at time e. Under the Assumption A.2, define the propensity score as κ(IF

it−1) ≡
E[Dit|IF

it−1]. Then we can rewrite the average treatment effect as:

E[ω1
ie − ω0

ie] = E
[

ωitDie

κ(IF
ie−1)

− ωie(1−Die)

1− κ(IF
ie−1)

]
. (A.1)

In general, when the sequential randomization fails, the average treatment effect is not
identified without further restrictions, see Abbring and Heckman (2007) for discussion.

A.2 Identify the Average Treatment Effect

When we write down the average treatment effect equation (A.1), we use the firms’ infor-
mation set IF

ie−1. Many variables in IF
ie−1, such as (ω1

ie−1, ω
0
ie−1) and ζie−1 are not available

to the econometrician. Instead, the econometrician has access to the information set IE
ie−1,

see Definition 2. To identify the ATE under the absorbing treatment context, we require a
sequential randomization condition for the econometrician:

Assumption A.3. (SR-E) Dit ⊥ (ω1
is, ω

0
is)s≥t|IE

it holds for t = e.

In general, we have IF
ie−1\IE

ie−1 = {(ω1
is, ζis)s≤e−1}. If Die is dependent of ω1

ie−1, then
Assumption A.3 fails because ω1

ie−1 is dependent of ω1
ie. However, there are special cases

where we can still use the econometrician’s information set to identify the ATE.

Proposition A.1. Suppose the potential productivity process satisfies Example 2, i.e., ω1
is = ω0

is

for s ≤ e − 1. Moreover, the cost shock ζie−1 is independent of the evolution shocks (ϵ1is, ϵ
0
is)s≥e

conditional on the econometrician’s information set IE
ie−1. Then, we can identify the ℓ-period-ahead

average treatment effect as

E[ω1
ie+ℓ − ω0

ie+ℓ] = E
[
ωie+ℓDie

κ(IE
ie−1)

− ωie+ℓ(1−Die)

1− κ(IE
ie−1)

]
. (A.2)

Proof. If ω1
is = ω0

is for s ≤ e−1, then firms’ treatment decisions satisfy Die = g(IE
ie−1, ζie−1).

By the potential productivity process (3), ω1
ie+ℓ = h̄

(ℓ)
1 (h+(ωie−1) + ϵ0ie, ϵ

1
ie+1, ..., ϵ

1
ie+ℓ), and
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(3), ω0
ie+ℓ = h̄

(ℓ+1)
0 (ωie−1, ϵ

0
ie, ϵ

0
ie+1, ..., ϵ

0
ie+ℓ), where the h̄

(ℓ)
d is the ℓ-times composited evolu-

tion process of h̄d. Then conditional on the econometrician’s information set IE
ie−1, the

variation of Die is caused by ζie−1, the variation of (ω1
ie+ℓ, ω

0
ie+ℓ) is caused by (ϵ1is, ϵ

0
is)s≥e. By

assumption, they are independent. Therefore, Assumption A.3 is satisfied, and equation
(A.2) follows by the propensity score matching method.

When ℓ = 0 and Assumption A.3 holds, it can be shown that (A.2) is the same as
(22). However, when ℓ > 0, we cannot directly calculate the ATE from the identified h̄1

and h+. This interpretation of the treatment effect is also different from the endogenous
productivity method.

Even if the productivity process in Example 2 is the same as that in Doraszelski and
Jaumandreu (2013), we note that the identified average treatment effect (A.2) is neither
E[h+(ωie−1) − h̄0(ωie−1)] nor E[h̄1(ωie−1) − h̄0(ωie−1)], which are usually interpreted as
treatment-related effects in fully structural models. As we note, the quantity h+(·)− h0(·)
reflects the trend difference, but it fails to account for the selection bias when treatment
Dit is not exogenous.

B Proofs

B.1 Proofs in Section 3

B.1.1 Proof of Lemma 3.1

Proof. The proof of statement (1) is given in GNR. We use the techniques in GNR to prove
statement (2). Let ωit−1(β) ≡ Φit−1(kit−1, lit−1,mit−1) − f0(kit−1, lit−1;β). We first note that
E[qit| {kit, lit, kit−1, lit−1,mit−1}] = f0(kit, lit;β)− h(ωit−1(β)). Then we have:

∂E[qit| {kit, lit, kit−1, lit−1,mit−1}]
∂kit

=
∂f0(kit, lit)

∂kit
,

∂E[qit| {kit, lit, kit−1, lit−1,mit−1}]
∂lit

=
∂f0(kit, lit)

∂lit
.

Therefore, f0 is identified up to an additive constant by the existence of the solution to
partial differential equations.
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B.1.2 Proof of Theorem 3.1

Proof. We first look at equation (8), and the proof of expression (9) follows similarly. We
can write

E[ωit(β)− h̄0(ωit−1(β))|Zit, Dit = Dit−1 = 0]

= E[ω0
it(β)− h̄0(ω

0
it−1(β))|Zit, Dit = Dit−1 = 0]

= E[ϵ0it|Zit, Dit = Dit−1 = 0] = 0

(B.1)

where ω0
it(β) denotes the potential productivity without treatment, recovered under pa-

rameter value β and Dit = 0. The first equality of (B.1) holds by the potential outcome
equation and the last equality holds by Assumption 3.2. The moment condition (8) is well
defined by Assumption 3.3. By Lemma 3.1, the result follows.

B.2 Proofs in Section 4

B.2.1 Proof of Corollary 4.1

Proof. Recall that from Proposition 3.1, β and the evolution process h̄d is identified. As
a result, if firm i’s treatment status is Dis = d, we can recover productivity ωis + ηis =

(qis − f(kis, lis,mis, Dis = d;β), which is ωd
is + ηis since Dis = d.

B.2.2 Proof of Proposition 4.1

Proof. Note that by further conditional on the group ei = t,

(CATTg,0(ω)|ei = t) =(1) E[ωit − h̄0(ω
0
it−1)|ei = t, i ∈ g, ωiei−1 = ω]

=(2) E[ωit − h̄0(ωit−1)|ei = t, i ∈ g, ωiei−1 = ω],

where (1) by replacing ω0
it with the evolution process and using Assumptions 3.2 and 4.2,

(2) follows by the potential outcome (2) and ωiei−1 = ω0
iei−1. Further, take the expectation

with respect to the treatment time ei to get the result.
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B.2.3 Proof of Proposition 4.2

Proof. By the definition of CATT:

CATTg,ℓ(ω) =(a) E[ωiei+ℓ|i ∈ g, ωiei−1 = ω]− E[h̄(ℓ)
0 (ωiei−1, ϵ

0
iei
, ..., ϵ0iei+ℓ)|i ∈ g, ωiei−1 = ω]

=(b) E[ωiei+ℓ|i ∈ g, ωiei−1 = ω]− E[h̄(ℓ)
0 (ωis−1, ϵ

0
is, ..., ϵ

0
is+ℓ)|i ∈ g′, ωis−1 = ω]

=(c) E[ωiei+ℓ|i ∈ g, ωiei−1 = ω]− E[ωis+ℓ|i ∈ g′, ωis−1 = ω],

(B.2)

where (a) follows by the potential productivity evolution process and the potential out-
come equation, (b) follows by Assumptions 4.3, and (c) follows by the potential produc-
tivity evolution procedure for untreated firms, and ω0

is+ℓ = ωis+ℓ for untreated firms.

B.2.4 Proof of Proposition 4.3

Proof. With the identified h̄0 from Proposition 3.1, for any group-g′ firm i at time s, we
can recover its ϵ0is ≡ ωis − h̄0(ωis−1), so the distribution G0

ϵ is identified. By condition (ii)
in Assumption 4.4, the joint distribution of (ϵiei−1, ..., ϵiei+ℓ) is identified as the product
distribution (G0

ϵ)
ℓ. The identification result follows by the evolution process (B.1).

B.2.5 Proof of Proposition 4.4

Proof. We prove the result for the positive switching effect ATT+
g,0, and the negative switch-

ing ATT follows similarly. Note that for regime change indicator Gig = 1,

ATT+
g,0 =(a) E[ω1

ig − ω0
ig|Dig−1 = 0, Dig = 1]

=(b) E[ω1
ig|Dig−1 = 0, Dig = 1]− E[h̄0(ω

0
ig−1)|Dig−1 = 0, Dig = 1]

=(c) E[ωig|Dig−1 = 0, Dig = 1]− E[h̄0(ωig−1)|Dig−1 = 0, Dig = 1],

where (a) follows by definition, (b) follows by Assumptions 3.2 and 4.2, (c) follows by the
potential outcome equation (2).

C Data Appendix

C.1 Construction of Other Variables

We construct the main variables for production function estimation as follows.
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Materials: Costs of goods sold plus selling, general and administrative expenses minus
labor costs. Labor costs are measured using the payroll payable, and deflated using the
industry-year level input price index.

Capital: Fixed assets including property, plant, and equipment (PP&E) deflated by
province-year level investment price index.

Labor: Total number of registered working employees reported in the annual report.
Value Added: Operational revenue minus materials, deflated by province-year level

output price index.
Annual Sales: Total operational revenue, deflated province-year level output price in-

dex.
All the price indices are extracted from China’s Statistical Yearbook. The summary

statistics of these variables are displayed in the following table.

Table C.1: Summary Statistics of Main Production Variables

Variable Mean SD P5 P25 P50 P75 P95
m 21.095 1.263 19.209 20.193 21.001 21.875 23.418
l 7.675 1.024 6.073 6.945 7.620 8.359 9.444
k 20.007 1.265 18.034 19.135 19.907 20.800 22.290
y 18.895 1.260 16.893 18.055 18.831 19.708 21.130
ln(sale) 21.141 1.222 19.327 20.272 21.041 21.898 23.405

The industrial classification is based on the two-digit China’s National Industrial Clas-
sification. We choose the manufacturing industries and perform the estimation by 2-digit
industry. We drop some industries that contain too few observations to conduct mean-
ingful analysis or contain too few treated observations. The final sample of industries and
number of observations for treated and control groups are listed in Table C.2.
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Table C.2: Number of Treated and Untreated Observations for Different Industries

Industries Untreated Treated Total
Print & Paper 438 50 488
Food & Beverage 890 74 964
Electronics Manufacturing 1,431 87 1,518
Healthcare Manufacturing 1,627 85 1,712
Metal Processing 1,925 79 2,004
Chemical Synthesis 2,525 130 2,655
Equipment Manufacturing 4,335 762 5,097
Total 13,171 1,267 14,438

Note: The Electronics Manufacturing industry encompasses the production of vari-
ous electronic equipment, including the manufacturing of other electronic equipment,
daily-use electronic appliances, and electronic components. The Equipment Manu-
facturing industry involves the production of specialized equipment, transportation
equipment, instrumentation, cultural and office machinery, general machinery, and
electrical machinery and equipment. The Healthcare Manufacturing industry special-
izes in the production of pharmaceuticals and biotechnology products. The Print &
Paper industry covers activities such as printing, manufacturing of cultural, educa-
tional, and sports goods, as well as paper and paper product manufacturing. The
Food & Beverage industry focuses on food manufacturing, food processing, and bev-
erage manufacturing. The Metal Processing industry encompasses various activities,
including nonferrous metal smelting and rolling, metal product manufacturing, non-
metallic mineral product manufacturing, and ferrous metal smelting and rolling. The
Chemical Synthesis industry includes the manufacturing of chemical raw materials
and chemical products, chemical fiber, plastics, petroleum processing and coking, and
rubber products.

C.2 Defining Production Digitalization

The text analysis of annual reports contains two main steps: keyword searching and re-
fining.

Step 1: Keywords Searching To capture state-of-art digital technologies involved in
production digitalization, we choose the following keywords (Chinese bopomofo in brack-
ets): digitalization (Shu Zi Hua), smartness (Zhi Neng), intelligence (Zhi Hui), Internet of Things
(Wu Lian Wang or IoT), industrial internet (Gong Ye Wu Lian Wang), big data (Da Shu Ju), cloud
computing (Yun Ji Suan), industrial cloud (Gong Ye Yun), platform (Ping Tai), SaaS, C2M and
various management information systems (such as PDM, ERP, SRM, CRM, MES, SCADA, PLM
and their Corresponding Chinese names). Among these words, “Smart” (Zhi Neng), “Intelli-
gent” (Zhi Hui), and “Platform” (Ping Tai). These keywords appear in annual reports in various
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forms, such as “Smart Manufacturing” (Zhi Neng Zhi Zao), “Smart Factory” (Zhi Hui Gong
Chang), “Smart Production” (Zhi Neng Zhi Zao), “Smart Firms” (Zhi Hui Xing Qi Ye), “Cloud
Platform” (Yun Ping Tai), and “Digital Purchasing Platform” (Dian Zi Cai Gou Ping Tai), etc.
To avoid missing useful information on digitalization, we only use the stem words “Zhi
Neng”, “Zhi Hui”, and “Platform” to identify digitalization-related texts.

Step 2: Manual Reading and Refining By manual reading of the annual reports, any
paragraphs on digitalization that are related to production, manufacturing and equip-
ment or workshop upgrade are classified as production digitalization. However, we no-
tice that in some annual reports, firms may describe the development of digitalization
in their own sector or China’s national strategy, which is not related to the firm’s own
implementation of digitalization. In our construction of the digitalization indicator, we
exclude such scenarios by manually identifying them and excluding them from the firm’s
own digitalization strategy. We list three examples below:18

• Example 1 (Stock ID: 000008, Year: 2018) “Driven by the trend of technological
progress, rail transit operation and maintenance equipment have been upgraded from in-
formatization to digitalization characterized by intelligence, data, internet and deep learn-
ing. Traditional equipment is upgrading to intelligent equipment; the operation
and maintenance system is upgrading from single-product intelligence to the un-
manned maintenance factory. It is the right time for data-oriented development of
equipment in rail transit industry.”

• Example 2 (Stock ID: 300161, Year: 2017): “Made in China 2025 puts forward the
strategic goal of achieving manufacturing power through ‘three steps’. Centering on
the top-level design of Made in China 2025, relevant supporting policies have been
issued successively, and intelligent manufacturing pilot demonstration projects have been
accelerated, with obvious demonstration effect. With the further deepening of transfor-
mation, China’s manufacturing industry will be further enhanced in digitalization,
networking and intelligence.”

• Example 3 (Stock ID: 000020, Year: 2012) “. . . domestic and international economic
environment is complex, with difficult concerns and positive factors co-existing. On
the one hand, the ability of technological innovation is insufficient. In the new wave of
industrial revolution which centers on global digital and intelligent manufacturing, the gap
between domestic enterprises and developed countries in Europe and the United States in

18The English texts are translated from Chinese texts in firms’ annual reports.
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the field of high-end technology is facing the risk of being widened again, and enterprises
will bear the pain of structural adjustment in the process of industrial upgrading
. . . ”

The quoted paragraph in Example 1 talks about the digitalization development in its
own industry, but not the firm’s own digitalization. In Example 2, the paragraph is a
description of China’s national strategy for digitalization. Example 3 mentions the global
environment of digitalization, but not the firm’s own strategy.

Examples of Identified Production Digitalization To be concrete, we provide some ex-
amples of texts that are identified as production digitalization after performing the text
analysis:

• Example 1 (Stock ID: 002085, Year: 2018): “Our company has intensified the trans-
formation and upgrading efforts, established intelligent factories with robots as the
core, improved the automation level of manufacturing industries, and improved the
core competitiveness. By building a digital platform in the whole field of digital re-
search and development, digital technology and digital manufacturing of Wanfeng,
our company optimized and standardized the operating system, realized the prod-
uct life cycle management, and provided data support for company information
construction and intelligent manufacturing of intelligent factory.”

• Example 2 (Stock ID: 002920, Year: 2018): “. . . . . . The company has built a digital
intelligent factory in an all-round way and established industry-leading highly au-
tomated and information-based production lines. Now digital intelligent factories
and intelligent storage systems have been put into use successively. The construc-
tion project of integrated industrialization of automobile electronics and mobile In-
ternet technology has officially laid the foundation and is under construction.”
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C.3 Suggestive Evidence of Empirical Assumptions

Figure C.1: Empirical Cumulative Distribution of ϵ0it

Note: The blue solid line represents the CDF of ϵ0it before 2010, and the red dashed line denotes the CDF of
ϵ0it after 2010.
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Table C.3: Results of Kolmogorov–Smirnov equality-of-distributions test

Industry Control < Treated Treated < Control Combined K-S
Equipment Manufacturing 0.0458 -0.0406 0.0458

(0.541) (0.617) (0.919)
Electronics Manufacturing 0.0373 -0.0759 0.0759

(0.816) (0.431) (0.794)
Healthcare Manufacturing 0.0508 -0.0315 0.0508

(0.138) (0.467) (0.276)
Print & Paper 0.0137 -0.0715 0.0715

(0.934) (0.154) (0.308)
Food & Bevarage 0.0175 -0.0292 0.0292

(0.825) (0.584) (0.951)
Metal Processing 0.0086 -0.0703 0.0703

(0.912) (0.002) (0.004)
Chemical Synthesis 0.0375 -0.0515 0.0515

(0.468) (0.238) (0.47)
Note: The p-values for the test statistics are in parentheses.

C.4 Supplementary Empirical Results

Scatter Plots of Treatment Effects and the Initial Productivity As a supplement to the
analysis in the main text, Figure C.2 presents scatter plots for different periods after pro-
duction digitalization. From period ℓ = 0 to period ℓ = 4, we see that the correlation
between T̂ T iℓ and ω̂0

iei−1 becomes more and more positive. This means that firms with
higher ex-ante productivity obtain higher productivity gains as time evolves.
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Figure C.2: Initial Productivity and Productivity Effects of Production Digitalization
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Note: All fitted lines are from a linear regression of firm-specific treatment effects T̂ T iℓ

on the firm’s initial productivity ω̂0
iei−1. The initial productivity is normalized using the

industry average productivity for each industry for comparison across industries. Shaded
areas indicate the 95% confidence intervals for the predicted mean value of firm-specific
treatment effects.

Estimates of the Translog Production Functions Table C.4 displays the estimates of the
translog production functions for 7 industries in the sample. Note that there are large
differences in the production function coefficient estimates, indicating the necessity of
estimating the production function separately for each industry. Moreover, almost all the
coefficient estimates are statistically significant, confirming the plausibility of using the
translog specification to allow the output-input elasticities to depend on the input levels.
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Table C.4: Estimates of Translog Production Functions

Industry βl βk βll βlk βkk βt

Food &Beverage 1.282 -2.916 -0.024 0.010 0.073 0.050
(0.001) (0.000) (0.001) (0.000) (0.003) (0.005)

Print & Paper -1.333 -1.757 0.111 0.028 0.035 0.080
(0.083) (0.109) (0.007) (0.002) (0.004) (0.007)

Chemical Synthesis 1.769 -2.868 0.118 -0.135 0.100 0.079
(0.000) (0.000) (0.000) (0.000) (0.001) (0.005)

Electronics Manufacturing 1.282 -2.265 0.140 -0.120 0.079 0.094
(0.000) (0.000) (0.001) (0.000) (0.001) (0.004)

Metal Processing -1.499 0.848 0.125 0.026 -0.027 0.068
(0.001) (0.000) (0.001) (0.000) (0.002) (0.001)

Equipment Manufacturing 1.133 -2.514 0.077 -0.066 0.076 0.070
(0.000) (0.000) (0.001) (0.000) (0.001) (0.004)

Healthcare Manufacturing -0.432 -0.047 0.079 0.014 -0.003 0.081
(0.001) (0.000) (0.001) (0.000) (0.002) (0.004)

Note: The standard errors in the parenthesis are obtained by bootstrapping 500 times.
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D Additional Results

D.1 Additional Moments for Restricted Productivity Processes

Our moment conditions in Proposition 3.1 impose no additional assumptions on the pro-
ductivity evolution process (3). While implementing moment conditions in Proposition
3.1 requires minimal structural assumptions, we require a relatively large sample of two-
year consecutively untreated and treated observations as in Assumption 3.3. Such data
requirements can be satisfied when the panel satisfies an absorbing treatment type de-
sign. However, if the treatment variable is volatile over time, we may need to discard a
substantial fraction of the firms to implement (8) and (9), which leads to inefficient use
of data. We now consider several alternative assumptions on the evolution process that
allow us to derive more flexible moment conditions and make use of firms with volatile
treatment status.

D.1.1 Independent Evolution Process

Let’s consider the case where the two potential productivity processes evolve indepen-
dently as in Example 3. In this case, we may substitute the Markov process back several
periods to form additional moment conditions. Even for a firm that changes its treatment
status every period, we know the treatment statuses every two periods must coincide.
To form moment conditions for an independently-productivity process, we impose the
following assumption:

Assumption D.1. For d = 0, 1, the Markov process ωd
it satisfies

ωd
it = h̄

(s)
d (ωd

it−s) + r(ϵdit, ..., ϵ
d
it−s+1),

where h(s)
d is an s-period transition function and r(·) is linear in all arguments.

Assumption D.1 is satisfied for the AR(1) process. The linearity of r(·) ensures that
we can generalize moment conditions (8) and (9) to an s-period lagged evolution process.
Note that we have to rule out the evolution process h+ and h− for the transition periods.

Corollary D.1. Suppose Assumption D.1 holds and the productivity process satisfies Example 3,
then the following two moment conditions hold:

E[ωit(β)− h̄
(s)
0 (ωit−s(β))|Zit−s+1, Dit = Dit−s = 0] = 0, (D.1)

E[ωit(β)− h̄
(s)
1 (ωit−s(β))|Zit−s+1, Dit = Dit−s = 1] = 0. (D.2)
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Moment conditions (D.1) and (D.2) allow us to use a larger fraction of firms in the
dataset. However, we recommend combining moment conditions (D.1) and (D.2) with (8)
and (9) to estimate the production functions unless Assumption 3.3 fails. It’s unfortunate
that we cannot show non-parametric identification of production function with moments
(D.1) and (D.2) alone: The error terms ϵit−s is correlated with kit and lit for all s ≥ 1, and
thus they are not in instrument set Zit−s+1. Therefore, we cannot apply the GNR trick to
differentiate both sides of (D.1) to identify the production function.

One may argue that kit−s+1 and lit−s+1 can serve as instruments for kit and lit. How-
ever, without solving the firms’ dynamic optimization problem, we cannot establish the
functional relationship between (kit, lit) and (kit−s+1, lit−s+1), and we cannot prove the
non-parametric identification of production functions. However, when the production
function is Cobb-Douglas, the log-linear form of the production function along with the
valid instrument kit−s+1 and lit−s+1 allow us to identify the production function parame-
ters and the evolution process.

D.1.2 Divergent Productivity Processes

Now we consider the productivity process in Example 2. Since only the observed pro-
ductivity matters for the evolution process, we can further derive the moment conditions
at the transition periods.

Corollary D.2. Suppose Assumptions 2.1-3.3 hold and the productivity evolution process satis-
fies Example 2. Then the moment conditions (4) (and respectively (6)), (8), (9) and

E[ωit(β)− h+(ωit−1(β))|Zit, Dit = 1, Dit−1 = 0] = 0, (D.3)

identify the production functions, and the evolution processes h̄d and h+
1 nonparametrically up to

a constant difference.

The additional moment conditions in Corollary D.2 are useful when the panel is short
or when we only observe one period after the treatment status changes. Corollary D.2
requires the transition period to be treated separately from the consistent treatment status
period. Moment condition (D.3) is imposed to identify the positive transition process h+.

D.2 Identifying CATT with an Alternative Assumption

Assumption D.2. The Markov process ω0
it satisfies

ω0
it = h̄

(s)
0 (ω0

it−s) + r(ϵ0it, ..., ϵ
0
it−s+1),
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where h̄(s)
0 is an s-period transition function and r(·) is linear in all its arguments. Moreover, the

E[ϵ0it−s+ℓ|ω0
it−s] = 0 for all ℓ ≥ 0.

Proposition D.1. Under Assumption 3.2, 4.2, and D.2, the ℓ-period-ahead CATT is identified as
CATTg,ℓ(ω) = E[ωiei+ℓ − h̄

(ℓ)
0 (ωiei−1)|i ∈ g, ωiei−1 = ω].

Proof. Note that conditional on ei = t,

(CATTg,ℓ(ω)|ei = t) =(i) E[ωit+ℓ − h̄
(ℓ)
0 (ω0

it−1)− r(ϵ0it, ..., ϵ
0
it−s+1)|ei = t, i ∈ g, ωiei−1 = ω]

=(ii) E[ωit+ℓ − h̄
(ℓ)
0 (ωit−1)|ei = t, i ∈ g, ωiei−1 = ω],

where (i) by substituting the ω0
it with the evolution process in Assumption D.2. Note that

the treatment is absorbing, so

E[r(ϵ0it, ..., ϵ
0
it−s+1)|ei = t, i ∈ g, ωiei−1 = ω] = E[r(ϵ0it, ..., ϵ

0
it−s+1)|Dit = 1, i ∈ g, ωiei−1 = ω].

As a result, (ii) follows by Assumptions 3.2 and linearity of r(·). The result in the propo-
sition follows by further taking expectations with respect to ei.

Assumption D.2 is satisfied for an AR(1) productivity process, but generally fails when
non-linearity appears in the transition function h̄0. Therefore, Assumption D.2 can be
restrictive.

D.3 Counterfactual Treatment Effect

Treatment effect objects such as ATT and ATE are useful when we take a retrospective
evaluation of the treatment or policy effect. However, in many settings, policymakers are
deciding whether to apply the same treatment policy to a counterfactual group of firms
based on the knowledge from the currently available data.

In this section, we consider a program that rolls out in several phases and the treat-
ment status is absorbing. We start with an initial full set of firms (denoted by S) that are
not treated. At time t0, a subset of firms become treated (denoted by Str) while the rest of
firms remain untreated (denoted by Sut). Untreated firms cannot change their treatment
status unless a new phase of the program begins. A policymaker stands at period t0 + s

and has access to firm-level data up to time t0+ s−1 and needs to decide whether to start
a new phase of the program. There are many empirical examples where the treatment
program rolls out in several phases: For example, the State-Owned Enterprise reform

60



in China19 first took place in the 18 experimental cities and rolled out to the rest of the
country in several phases.

The policymaker is interested in the treatment effects on the untreated group Sut,
while the treatment effects identified in previous sections are evaluated using the whole
sample S. These two quantities in general do not coincide even when the policy is a
fully randomized controlled experiment. This is because the treatment effect objects at
time t0 depends on the distribution of potential outcome ω1

it0−1. While a fully randomized
treatment ensures that F (ω1

it0−1|i ∈ Str) = F (ω1
it0−1), the s-period ahead distribution of

potential outcome ω1
it0+s−1 will not be the same as the t0 − 1 period potential outcome

distribution, i.e., F (ω1
it0+s−1|i ∈ Str) ̸= F (ω1

it0−1), unless the productivity distribution is
stationary.

We, therefore, seek to characterize the counterfactual treatment effect objects that al-
low the policymaker to evaluate the value of extending the program to the rest of the
firms at time t + s. In general, without imposing further structural assumptions other
than Assumptions 2.2-A.3, it is almost impossible to identify the counterfactual treatment
effect objects: The target treatment effect is defined as the difference ω1

it0+s − ω0
it0+s, but

for the Sut firms, we have at best the knowledge of ω0
it0+s−1 but not ω1

it0+s−1. We therefore
consider several additional structural assumptions that allow us to evaluate the counter-
factual treatment effects defined in the following:

ATEcount
s,ℓ ≡ E[ω1

it0+s+ℓ − ω0
it0+s+ℓ|i ∈ G], (D.4)

which is the ℓ-period ahead counterfactual treatment effect for group G ⊆ Sut firms if the
treatment take place at time t0 + s.

D.3.1 Divergent Productivity Process

Recall that the difficulty of characterizing the counterfactual treatment effect comes from
the lack of knowledge of ω1

it0+s−1. However, the divergent productivity process in Exam-
ple 2 implies the coincidence of two potential outcomes before treatment status changes:
ω0
it0+s−1 = ω1

it0+s−1 for all untreated firms i ∈ Sut and s ≤ 0. Therefore, we can characterize
the counterfactual treatment effect.

Proposition D.2. Let the productivity evolution process satisfy Example 2. Moreover, suppose
the conditional parallel trend assumption 4.2 holds. For a subset G ⊆ Sut of not-yet treated firms
at time t0 + s that are assigned to take treatment at t0 + s, the instantaneous counterfactual

19This is known as the privatization process of the state-owned enterprises.
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treatment effect is identified as

ATEcount
s,0 = E[h+(ωit0+s−1)− h̄0(ωit0+s−1)

∣∣i ∈ G],

where h+ is identified from Corollary D.2.

Proof. By the divergent productivity process assumption, ω1
it0+s = h+(ωit0+s−1) + ϵ1it+s and

ω0
it0+s = h̄(ωit0+s−1) + ϵ0it+s. The result follows by the conditional mean zero condition:

E[ϵdit+s|Dit+s] = 0 for d ∈ {0, 1}.

For ℓ-period ahead counterfactual treatment effect, we need additional structural as-
sumptions on the productivity process shocks so that we can simulate the productivity
process several periods ahead.

Assumption D.3. (i). The shocks satisfy ϵdit ∼i.i.d. G
d
ϵ (·) for d ∈ {0, 1}, where the i.i.d is over

both firm index i and time index t. (ii). No selection in pre-treatment shocks: ϵ0it ∼i.i.d G0
ϵ(·) for

t < t0. (iii) No selection in already-treated group shocks: ϵ1it|i ∈ Str ∼i.i.d G
1
ϵ(·) for t0 ≤ t < t0+s.

Assumption D.3 is similar to Assumption 4.4 except that we also require that the dis-
tribution G1

ϵ(·) is identified from the already treated firms Str. This is because, for the
factual treatment, we can observe the ω1

it+s and ϵ1it+s once the firms are treated. How-
ever, for the counterfactual treatment effects, we need to simulate both the treated and
untreated future productivity.

Proposition D.3. Under Assumption 4.2, 4.3, and D.3, G0
ϵ , G

1
ϵ are identified, and the ℓ-period-

ahead counterfactual treatment effect at period t0 + s is identified as

ATEcount
s,ℓ = E(G1

ϵ )
ℓ [h̄

(ℓ−1)
1 (h+(ωit0+s−1, ϵ

1
it0+s), ϵ

1
it0+s+1, ..., ϵ

1
it0+s+ℓ)|i ∈ G]

− E(G0
ϵ )

ℓ [h̄
(ℓ)
0 (ωit0+s−1, ϵ

0
is, ..., ϵ

0
is+ℓ)|i ∈ G],

where the expectation on (Gd
ϵ )

ℓ is taken over the joint distribution of (ϵdit0+s, ..., ϵ
d
it0+s+ℓ).

Remark D.1. The characterization of the counterfactual treatment effect also highlights another
reason in favor of the potential productivity process over the endogenous productivity method (Do-
raszelski and Jaumandreu, 2013). Recall that Doraszelski and Jaumandreu (2013) do not model the
transition period and implicitly assume that h+ = h̄1 in the identifying moment condition. While
imposing h+ = h̄1 may not lead to a large bias in the production function estimates when the panel
is long, it does lead to a bias in the counterfactual treatment effect, especially the instantaneous
treatment effect ATEcount

s,0 .
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D.3.2 Stationary Conditional Potential Outcome Moments

In more general models, we do not have information on the ω1
it+s−1 for the not-yet-treated

group Sut. We now investigate conditions where we can transfer the knowledge of the
factual treatment effect to the counterfactual treatment effect. In particular, we want the
stationary conditional distribution of potential outcomes:

Assumption D.4. The distribution of ω1
it0−1|(ω0

it0−1 = w, i ∈ Str) is the same as the distribution
of ω1

it0+s−1|(ω0
it0+s−1 = w, i ∈ G).

Assumption D.4 is the high-level assumption on potential productivity distribution.
There are two constraints embedded in D.4: 1. No selection in the potential outcome. This
is reflected in the requirement that we condition on the different firm groups Str and Sut;
2. The conditional distribution of ω1

it is stationary at time t0 − 1 and t0 + s− 1.

Proposition D.4. Suppose Assumptions D.3 and D.4 hold. The counterfactual treatment effect
is identified as

ATEcount
s,ℓ = E

{
E[ωit0+ℓ|i ∈ Str, ωit0−1 = ωit0+s−1]

∣∣∣∣i ∈ G
}
−E(G0

ϵ )
ℓ [h̄

(ℓ)
0 (ωit0+s−1, ϵ

0
is, ..., ϵ

0
is+ℓ)|i ∈ G].

Proof. We first note that

E[ωit0+ℓ|i ∈ Str, ωit0−1 = ωit0+s−1]

= E(G1
ϵ )

ℓ,ω1
it0−1

[h̄
(ℓ−1)
1 (h+(ω1

it0−1, ω
0
it0−1, ϵ

1
it0
), ϵ1it0+1, ..., ϵ

1
it0+ℓ)|i ∈ Str, ωit0−1 = ωit0+s−1]

=(∗) E(G1
ϵ )

ℓ,ω1
it0+s−1

[h̄
(ℓ−1)
1 (h+(ω1

it0+s−1, ω
0
it0+s−1, ϵ

1
it0+s), ϵ

1
it0+s+1, ..., ϵ

1
it0+s+ℓ)|i ∈ G, ωit0+s−1]

= E[ω1
it0+s+ℓ|i ∈ G, ωit0+s−1],

where we use Assumptions D.3 and D.4 in the (∗) step.
Then the counterfactual treatment effect is identified as

ATEcount
s,ℓ = E

{
E[ω1

it0+s+ℓ|i ∈ G, ωit0+s−1]− E[ω0
it0+s+ℓ|i ∈ G, ωit0+s−1]

∣∣∣∣i ∈ G
}

= E
{
E[ωit0+ℓ|i ∈ Str, ωit0−1 = ωit0+s−1]

∣∣∣∣i ∈ G
}

− E(G0
ϵ )

ℓ [h̄
(ℓ)
0 (ωit0+s−1, ϵ

0
is, ..., ϵ

0
is+ℓ)|i ∈ G].

The result follows.

The identified counterfactual treatment effect in Proposition D.4 uses two different ap-
proaches to impute the unrealized future potential productivities. For the treated future
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potential productivity, we use the stationary distribution assumption and use the already
treated firms to impute the ωit0+s+ℓ. In particular, we match each not-yet-treated firm at
time t0+s−1 with an already-treated firm at time t0−1 with the same realized productiv-
ity. For the untreated potential future productivity, we simulate the productivity process
into the future.
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