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Abstract

We introduce several new estimation methods that leverage shape constraints in auction models to estimate
various objects of interest, including the distribution of a bidder’s valuations, the bidder’s ex ante expected
surplus, and the seller’s counterfactual revenue. The basic approach applies broadly in that (unlike most
of the literature) it works for a wide range of auction formats and allows for asymmetric bidders. Though
our approach is not restrictive, we focus our analysis on first—price, sealed—bid auctions with independent
private valuations. We highlight two nonparametric estimation strategies, one based on a least squares
criterion and the other on a likelihood criterion. We establish several theoretical properties of our
methods to guide empirical analysis and inference. In addition to providing the asymptotic distributions
of our estimators, we identify ways in which methodological choices should be tailored to the objects of
interest. For objects like the bidders’ ex ante surplus and the seller’s counterfactual expected revenue
with an additional symmetric bidder, we show that our input—parameter—free estimators achieve the
semiparametric efficiency bound. For objects like the bidders’ inverse strategy function, we provide
an easily implementable boundary—corrected kernel smoothing and transformation method in order to
ensure the squared error is integrable over the entire support of the valuations. An extensive simulation
study illustrates our analytical results and demonstrates the respective advantages of our least—squares
and maximum likelihood estimators in finite samples. Compared to estimation strategies based on kernel
density estimation, the simulations indicate that the smoothed versions of our estimators are relatively
robust to the choice of an input parameter.
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1 Introduction

We develop several new estimators that impose shape constraints implied by the bidder’s incentive—compatibility
condition in auction models and illustrate how these estimators can be tailored to the ultimate target of the
estimation. Compared with existing methods that are specific to the study of first—price auctions, our ap-
proach generalizes to other auction mechanisms, has the same optimal nonparametric rates of convergence,
and attains the semiparametric efficiency bound in the estimation of some objects of direct interest to applied
researchers. Moreover, our methodology achieves these semiparametric efficiency bounds without having
to choose any input parameters, such as a kernel bandwidth. Practitioners can therefore leverage shape con-
straints to costlessly avoid searching for a parsimonious parametric approximation, formally defining a sieve
space, or selecting a bandwidth, as well as the associated risks of choosing wrongly.

The key insight behind our approach is that, despite the great diversity of auction formats we might
consider, the fundamental nature of a bidder’s decision problem is the same. Specifically, given the strategies
of a bidder’s competitors and the distribution of their private values, the bidder chooses her bid to optimally
trade off the probability of winning with her expected payment to the seller. Though the details of this trade—
off as a function of the bid are complicated and depend on the specifics of the auction rules, the equilibrium
expected payment to the seller is a convex function of the probability with which the bidder expects to
win in equilbrium.! Moreover, the first-order condition of the bidder’s problem requires that the slope of
the equilibrium expected payment function at the optimally chosen win probability is equal to her private
valuation. Thus, the derivative of the convex payment function is equivalently viewed as the inverse strategy
function, which maps optimally chosen win—probabilities to values. These facts have been used to establish
the revenue equivalence theorem (Myerson, 1981; Milgrom and Weber, 1982) and were subsequently invoked
as a generic nonparametric identification strategy (Larsen and Zhang, 2018). Our paper further exploits this
change of variables from bids to win—probabilities in order to relate the literature on nonparametric estimation
in auctions to the large literature on nonparametric estimation under shape constraints.

The main benefits of this change of variables are threefold. First, by reformulating the target of estimation
as the slope of a convex function, we open the door to a variety of well-known estimation strategies such as
(shape—)constrained (nonparametric) least squares and (a new version of) nonparametric maximum likelihood
estimation (MLE),” as well as some more adventurous estimators like a jackknife estimator. Second, this
framework generalizes the large and growing toolkit for nonparametric estimation and testing in first—price
auctions to generic auction mechanisms. And, finally, it allows the econometrician to easily impose the

structure of symmetric equilibria, namely that the marginal distribution of a bidder’s optimally chosen win—

'In first price sealed bid auctions, convexity of the expected payment is equivalent to monotonicity of the bid function. Lemma 14
in appendix A proves convexity of in any feasible auction mechanism (as defined by Myerson, 1981) with independent private values.
2See e.g. Brunk (1955) for an early example of nonparametric estimation subject to shape constraints.



probability is a known function that only depends on the number of bidders. Importantly, the distribution
function does not depend on the unknown distribution of the bidders’ private valuations. This a priori
knowledge of the win—probability distribution yields sizable improvements in the asymptotic distribution of
our estimators.

The latter observation is especially useful when we consider the estimation of objects that are less
primitive than the value density but may be of more direct interest to the researcher. To provide an example,
we introduce the notation e(p) for a bidder’s expected payment when she bids so as to win with probability p
in equilibrium and a(p) for its derivative. The bidder’s ex ante expected surplus can then be expressed as an
integral of a(p)p — e(p) with respect to the distribution of the bidder’s optimally chosen win—probability, and
the mean of the bidder’s valuations and the seller’s expected profit can similarly be expressed as a functional
of e and a. One can construct “plug—in” estimators for these objects by combining the estimated a with a
precise estimate of the win—probability distribution. In the symmetric case, however, we show that one can
significantly reduce the asymptotic variance by substituting the win—probability distribution which is known
to prevail in any symmetric equilibrium rather than an estimate thereof.

Moreover, we show that objects such as the bidder’s surplus can be estimated at a square—root rate of
convergence even when « is replaced with an unsmoothed estimate. The reason is that although the first step
estimator of a converges at a cube—root rate, it has little bias.> The act of integration in the second stage
acts as an average and hence reduces the asymptotic variance. Moreover, the resultant estimators achieve
the semiparametric efficiency bound when one fully exploits the symmetric structure of the equilibrium. If
the researcher does not assume bidders are symmetric or only observes one competitor bid per auction, the
semiparametric efficiency bound on the asymptotic variance is larger, but we again show that the unsmoothed
plug—in estimators for the mean valuation and bidder’s surplus attain the efficiency bound.

Thus, optimally smoothing the estimate of a does not necessarily improve the asymptotic performance
of the estimator of the desired object. Indeed, optimal pointwise estimation of @ can be detrimental. For
example, in order to achieve square—root consistency of the mean valuation using a smoothed estimate of the
inverse strategy function, one would need to “undersmooth” by choosing an input parameter to slow down the
pointwise rate of convergence of the inverse strategy function and reduce its bias. However, one must avoid too
much undersmoothing using methods that do not impose monotonicity a priori (e.g. Marmer and Shneyerov
(2012, MS), Ma et al. (2019b, Ma19b), and Guerre et al. (2000, GPV)), because letting the bandwidth go to
zero for a fixed sample size would yield an inconsistent estimator for the inverse bid function and produce an
inconsistent estimator of the mean valuation.* In contrast, there is no risk of too much undersmoothing using
our approach, because our undersmoothed and unsmoothed estimators of objects like the mean valuation

are asymptotically equivalent and attain the efficiency bound. This asymptotic efficiency result for both our

3Indeed, the asymptotic distribution is centered at zero.
“This is one advantage of imposing shape restrictions before smoothing. Another is that it is practically easier.



unsmoothed and undersmoothed estimators therefore provides a large degree of robustness in the choice of
bandwidths relative to existing methods.

Our paper relates to recent work on identification in trading mechanisms and estimation of monotone
bidding strategies in first—price auctions. Larsen and Zhang (2018) operationalize a similar change of variables
to prove generic nonparametric identification results in settings where the researcher does not observe the
rules of the mechanism and may not directly observe the agents’ actions, either, but is willing to assume
the data are generated in a Bayes—Nash equilibrium. Thus, their analysis begins one step behind ours in the
sense that they estimate the mapping from actions (e.g. bids) to outcomes (payments and allocations) in a first
stage. Not surprisingly, their simulations demonstrate their approach suffers from a large loss of precision
compared to estimation strategies that take advantage of prior knowledge of the auction mechanism. We
therefore view our respective contributions as complementary advances in identification and estimation of
auctions and auction—like mechanisms under shape constraints.’

Three recent papers have also considered shape—constrained estimation in first—price auctions.® Henderson
et al. (2012) impose monotonicity on a nonparametric estimator of the inverse bidding strategy—which is
equivalent to convexity of the expected payment function—by ‘tilting’ the empirical distribution of the bids,
Luo and Wan (2018, LW) consider an alternative approach that imposes convexity of the integrated quantile
function of the bidders’ valuations, and Mal9b apply a rearrangement technique to the first step estimator
in GPV. The constrained least squares estimator (LL.S) in this paper may be viewed as an extension of LW
to more general auction models with possibly asymmetric bidders, which we achieve by considering the
equilibrium expected payment instead of the integrated quantile function. Indeed, both our constrained least
squares estimator and the one in LW can be characterized as the (slope of) greatest convex minorants (GCM),
albeit of different functions.” In the case of first—price auctions with two symmetric bidders, the integrated
quantile function coincides with the equilibrium expected payment function, and our constrained least squares
estimator is numerically equivalent to the LW estimator. More generally, however, the integrated quantile
function differs from the expected payment function when there are more than two bidders, and it need not
be convex when bidders are asymmetric, because a bidder with a valuation equal to the T—quantile of its
distribution will generally not submit a bid equal to the r—quantile of its highest competing bid. Thus, the LW
approach does not apply to asymmetric auctions. The approach pursued in Mal9b uses the bids instead of the
probabilities and hence does not readily extend to other auction mechanisms.

Like the estimator proposed in LW, neither our constrained least squares estimator nor our nonparametric

3In appendix C we discuss how our approach can be applied to other mechanisms.

6 Another class of estimators known as “direct” estimators compute the equilibrium strategies for value distributions in a parametric
class and estimate the the model based on the predicted and observed bid distribution (GPV). These estimators satisfy shape constraints
by construction, but the direct approach to estimating the value distribution is impractical when bidders are asymmetric because the
equilibrium strategies must be computed numerically and the system of differential equations that characterizes the equilibrium is not
well-behaved.

"Note that our LS estimator yields the GCM of the expected payment function.



MLE requires the choice of an input parameter. Both of our unsmoothed estimators of the equilibrium
expenditure function e converge as a process to the same (tight) Gaussian limit process. The inverse strategy
function a, if the choice variable is the probability of winning, is the derivative of e. Both of our unsmoothed
estimators of @ converge at a \3/? rate to the same Chernoff—distributed limit, where T is the number of
auctions. If bidders are symmetric, our estimators have the same Chernoff limiting distribution as the estimator
in LW. Computation of both of our unsmoothed estimators is simple: the constrained least squares estimator
can be computed using an off—the—shelf algorithm and we show that our nonparametric maximum likelihood
estimator can be easily computed using a simple pool-adjacent—violators algorithm, also.

Although it is not our primary objective, in the interest of completeness and to facilitate comparison with
earlier work, we provide estimators of the quantile function, the distribution function, and the density f, of
valuations. The quantile function and distribution functions can be estimated using routine operations (such as
the delta method) on our estimates of a. As noted by GPV and others, estimating f,, requires nonparametric
derivative estimation and the optimal convergence rate is a leisurely 72/7.8 We provide estimation results for
the derivative ' of a, which indeed converges at the T?/7 rate. There are two ways of estimating f, using
our approach: a two-step procedure in the spirit of GPV and a one—step procedure like MS.” We do not see
any reason to prefer either the one—step or two—step procedure. We provide asymptotic linear expansions of
our first step estimators to allow readers to make up their own mind.

We analyze the performance of our estimators in a fairly extensive simulation study. In general, we find
that our estimators perform well and exhibit considerable robustness, both with respect to the design of the
simulation study and to the choice of input parameter. However, no clear winner emerges and our various
methods differ in systematic ways that are consistent with our asymptotic theory and with intuition. Hence,
we do not offer empirical researchers a specific recommendation; rather, we provide a collection of tools,
asymptotic results, and general insights that can be applied on a case—by—case basis.

Though we aim to provide a thorough foundation of asymptotic results, this paper conspicuously lacks
discussion of risk—aversion, affiliated private valuations, unobserved auction—level heterogeneity, endogenous
entry, and other extensions to the basic approach of GPV (Levin and Smith, 1994; Li et al., 2002; Li, 2005;
Campo et al., 2003; Guerre et al., 2009; Li and Zheng, 2009; Krasnokutskaya, 2011; Marmer et al., 2013;
Roberts, 2013; Gentry and Li, 2014, see, for example,) and related estimators based on sieve—approximations
to the value distribution (Campo et al., 2011; Bierens and Song, 2012; Kim, 2015; Aryal et al., 2018; Grundl
and Zhu, 2019). We restrict attention to asymmetric auction models with independent private valuations and

leave the many interesting extensions for future work.

8To obtain a fourfold improvement requires a data set that’s 128 times as large, compared to 32 for typical nonparametric estimators
of univariate objects and 16 for parametric estimators.

LW raise the interesting possibility of using a first step unsmoothed estimator as an input to the second stage of GPV, but do not
provide asymptotic results. It is likely that consistency obtains, but the f, convergence rate and indeed the asymptotic distribution
are unknown.



Our paper is organized as follows. In section 2 we describe the auction model. We then describe the
shape—constrained estimators of the equilibrium expenditure function e and its derivative « in section 3. In
section 4 we introduce and provide results for the smoothed versions of our estimates, including a boundary
correction and transformation scheme. We next show how the preceding estimates can be modified and
combined to estimate several objects of potential interest in section 5. We then present simulation results in
section 6 and conclude in section 7. Several supplementary results and variations on our methodology are

presented in appendix B. All proofs are in appendix A.

2 First—price auction model with independent private values

Leti =1, ..., nindex the bidders competing for an object in a first—price, sealed-bid auction. A bidder’s value
v; is drawn from a distribution F;, which takes support on a compact interval in the nonnegative reals. We
assume the seller sets a nonbinding reserve price of zero. We further assume each distribution is absolutely
continuous with a density f; that is bounded away from zero on its support.

Each risk—neutral bidder chooses her bid to maximize her expected surplus taking her competitors’
strategies as given. We will take bidder one (1) to be the bidder whose value is to be recovered and use a

subscript ¢ to denote her competitors. Thus, bidder one solves
mng{Gc(b)(vl - b)}, (1)

where G, (b) denotes the probability that bidder one’s competitors all bid no more than b.'°

We can equivalently formulate the bidder’s problem as a choice of her equilibrium probability of winning:

mjlx{pvl —e (M} 2

where e, (p) = Q.(p)p is bidder i’s equilibrium expected payment to the seller with Q, = Gc‘1 the quantile
function of the maximum rival bid.

The well-known fact that e; must be convex in p can be seen as a consequence of monotonicity of the
equilibrium strategies or incentive compatibility of the direct revelation selling mechanism that implements
the Bayes—Nash equilibrium of the first—price auction (Maskin and Riley, 2000). In any case, the solution to
bidder one’s problem is illustrated in figure 1. As noted by Larsen and Zhang (2018) and Milgrom and Weber
(1982), bidder one’s indifference curves in (p, e)-space are represented by straight lines with a slope equal to
v;. The optimal expected surplus is therefore attained where a;(p) = e'1 (p) = v;. From here on we drop the

subscript from the function e; and write e to mean e;.

19Tn principle one can accommodate dependence among bidder one’s competitors’ bids by treating groups of bidders as individual
bidders. Doing so requires additional assumptions to ensure monotonicity of equilibrium strategies.
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Figure 1: A risk—neutral bidder with indifference curves represented by the dashed lines would optimally
submit a bid that will win with a probability of 1/2 and expect to pay 1/8 to the seller (unconditional on
winning the auction).

3 Nonsmooth estimation of e and «

In order to eliminate conditioning variables in our notation for the competing distribution of bids and
equilibrium expected payment function, we assume valuations are independent across bidders, there is no
auction—level heterogeneity, and the same set of bidders compete in each auction. In a separate paper, we
incorporate auction heterogeneity semiparametrically and show that the parameters can be estimated at a faster
than ﬁ—rate, which is faster than the rates of convergence obtained in this section. Thus, the asymptotic
results presented here also hold in the semiparametric model with observed heterogeneity.'!

Under the assumption that bidders’ valuations are independent across auctions, each auction is an inde-
pendent realization of the same game. Therefore, the probability of winning and the expected payment as a
function of b can be estimated by G,(b) and G,-(b) b, where G is a suitable estimate of the distribution
function G, of the maximum of bidder one’s competitors’ bids.

Though a piecewise linear function e whose graph contains

{(Ger(b), bG (b)) : b=by, ..., by} 3)

converges to e at the same rate that G, converges to G, it is generally non—convex in finite samples, and the

slope of the menu between two nearby points is a poor approximation of its derivative. We will show that the

'"The key insight behind the superconsistency result is that, for heterogeneity parameters different from the truth, the behavior of
a, near the upper bound changes dramatically.



greatest convex minorant of e can be used to estimate the expected payment function and its derivative in a
single step.!> Moreover, we show that this estimator can be justified by a least—squares criterion on « and
estimated by isotonic regression. '3

3.1 Convexification

To motivate the least—squares criterion, suppose that a differentiable estimate of the quantile function for
bidder one’s highest competing bid were available. Multiplying this hypothetical estimator by p would yield a
differentiable, though possibly non—convex, estimator, e;-. A shape—constrained estimate of the derivative of

the expected payment function could then be obtained by solving the following problem

1
22&(% JRECEETDk dp),

where & is the set of nondecreasing nonnegative functions defined on [0, 1]. This least-squares objective can

be rewritten as

1 1 1 1
1 2 1 1

= / (a(p) —ef(p)) " dp= = / a*(p) dp — / a(p) el (p)dp + = / el (p)*dp.

2 Jo 2 Jo 0 2 Jo

The last term does not depend on @ and may therefore be dropped from the criterion without affecting the

shape—constrained estimator. The problem becomes

1 1
géig(%/o QZ(P)dP—/O a(P)deT(P)>, “)

which can be solved for any e, differentiable or not, provided that the second integral in (4) exists.

In a first-price auction, we use an unconstrained estimate of the empirical quantile function for bidder
one’s highest competing bid and set ez (p) = Q.r(p) p in (4), where Q. (p) =inf{b : G .r(b) > p} forp > 0
and Q,7(0) is taken to be the minimum rival bid. As we noted above, this e will generally be non-convex in
finite samples and piecewise linear. If Q.1 (p) is the empirical quantile function of the highest rival bid, ey

will be discontinuous at /T fort = 1, ..., T, and the least—squares criterion can be rewritten as

%/01 a*(p) dp — g /t; a(p) Q.r(p) dp — ga<%>%{ch<%> - QcT<%)}. )

where the second integral in (4) exists because « is bounded and increasing, and e is left—continuous.

2LW consider a greatest convex minorant estimator of a different function. Under independence and symmetry assumptions. their
estimator coincides with ours for two bidders whereas with more than two bidders the estimators are different but the limit distributions
coincide. This follows from lemma 2, stated later, and some elbow grease. LW do not deal with the asymmetric and dependent cases.

13 Applying a least—squares criterion to e would also yield a piecewise—linear convex estimator, but the solution to this least-squares
problem is more difficult to characterize and compute.



Given this representation, we show that the minimizer of (5) over all @ € & is a right—continuous
step—function (lemma 15).

The least—squares problem can then be further simplified to
T

. 1
min D (5% — Qerry = (Qery = Qerymt )t = Datr, ) ©)

ar < Loy pur

where a;, = a{(t — 1)/T} and Q.r, = Q.r(t/T). The optimization problem in (6) is then recognizable as a

classic isotonic regression problem. We can integrate up a; to obtain a convex estimator é; of e,

p
&r(p) = /0 ap(u) du.

As it turns out, & is simply the greatest convex minorant of e, and @ is its left—derivative: see figure 2.
Note that &} is both piecewise linear and continuous by construction.

er, ér
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Figure 2: Convexification algorithm illustrated for 7" = 5

If bidders are symmetric then a more efficient unconstrained estimator for the expected payment function
is given by pOr ( p!/ ("_1)), where QO is the empirical quantile function for the pooled sample of bids {b,} for
¢ =1,...,nT. In this case, the solution to the least—squares problem in (4) is found via a weighted isotonic
regression of { b\ 2" = b,y (£ = 1)} /{£" = = 1)"1} on {(£ — 1)/nT}"™" with weights given
by (¢ /nT)""! — {(f -1/ nT}“_l, where b, denotes the £—th order statistic. The corresponding constrained
estimator for e is the GCM of pQy (p!'/*=1), as before.

3.2 Asymptotics for the LS estimator

We now develop some asymptotic estimation results for our convex estimator é;. Before we do so, we will

make several assumptions and discuss conditions under which they would hold.



Assumption A. The private values v,q, ... , v, in each auction t are independent and drawn from continuous
distributions F\, ... , F,, respectively. The distributions have bounded convex supports [v, U] and their density

functions f, ..., f, are continuous and nonzero on (v, 0).'% There is independence across auctions. L]

Assumption A is a standard assumption in the auction literature. It is sufficient to ensure the existence
of monotone equilibrium bid functions (Lebrun, 2006).!> The common support assumption embedded in
assumption A is unnecessary for the existence of a monotone equilibrium, but is imposed to make our analysis
more wieldy.!® We note that assumption A is stronger than we need: we do not use independence among
the competitors’ valuations in the proofs of any of our theorems. The assumption can be relaxed provided
that bidder one’s unique best reply to its competitors’ bids is a monotone pure strategy and e; consistently

estimates bidder one’s expected payment.!”

Assumption B. Bidders are risk neutral and bid according to the same (strictly monotonic) Bayes—Nash

equilibrium strategy profile in every auction. [

Assumption B is also stronger than we need, because our results only require bidder one’s decision
problem to be of the form in (2); other bidders’ attitudes toward risk do not affect our inferences related
to bidder one’s bidding strategy or valuations. Thus, assumptions A and B are merely one set of sufficient
conditions on the primitives of the model under which our results can be proven.

A consequence of the assumptions made thus far is that Q! is continuous on any closed interval that does

not contain zero. Indeed, the first order condition corresponding to (2) implies that

0'(p) = v— Qc(p).
p

We now make a high level assumption on the convergence of an estimator of the bid distribution functions

and develop conditions under which it is known to hold.

14Tt is standard to model a binding reserve price as an atom at the low end of the value distribution.

5The equilibrium is unique if the reserve price is binding or if the value distribution is log—concave in a neighborhood of v
(Lebrun, 2006).

181f there is a binding reserve price or are more than two bidders with heterogeneous supports, p = 0 may be a corner solution to
the bidder’s problem. That is to say, any bidder with a valuation below the reserve price or a bidder with a value below b would prefer
to effectively abstain from the auction by submitting a bid that will lose for sure. In the heterogeneous support case, we can redefine
;(0) as the value of bidder i for which i is indifferent to participating. In the case of a binding reserve price, we can simply treat the
reserve price as another competing bid (that has a degenerate distribution) when estimating Q.. In both cases, the usual caveat
applies: the researcher cannot nonparametrically identify any function of the primitives that depends on f; below the screening value.
In particular, these unidentifiable objects include the mean of bidder i’s valuation and the counterfactual equilibrium in an auction
that decreases the equilibrium screening value. Objects that would still be identified include bidder i’s expected surplus and the
counterfactual equilibrium in an auction that increases the equilibrium screening value. A second caveat is that the supports of some
bidder’s optimally chosen win—probability might be bounded above zero or below one, in which case estimates of the support would
be needed for the boundary correction schemes in section 4. Hence, we use “wieldy” in part to mean that we will avoid repeating
these caveats in the remainder of this paper.

7For example, this allows for dependence among rival bids, though independence between bidder one and its rivals.

10



Assumption C. The difference between the estimator G, of the maximum rival bid distribution G, and G,
can, up to nuisance terms of order T=%/3, be written as a sample mean of mean zero functions that satisfy the
conditions of assumption G in Jun et al. (2015), whose implications include's ﬁ{GCT(-) -G,()} w» G¥,

where G* is a Gaussian process with covariance kernel H* and ~ denotes weak convergence. [

Assumption C is a relatively weak assumption, and as previously discussed, is the starting point for our
analysis. It is for instance satisfied if we take G to be the empirical distribution function of the maximum

competitor bid, in which case

H*{Q.(p),0.(p*)} = min(p, p*) — pp*. (7

It would also be satisfied if, instead, we assumed symmetry and took G, = G;‘l, i.e. the empirical bid

~2/3s

distribution estimated off all bids raised to the power n — 1. This is where the ‘up to order T part of

assumption C is needed since G%~' — G"~! is not itself a sample mean, but G%~' — G"™! = G""1(Gy — Gp) +
O,(T™"). In this case'

(n

—1)2 .
H*{Q.(p),0.(p")} = T){min(p,p*)l/(”_l) — (pp")/ D) (pp*) 2=, )

A final example is one in which there is asymmetry plus independence and all bids are observed in which

casezo

* * _ “ 1 _ *
H*{Q.(p,0.(0")} = Z;(G,-[Qc{max(p,p*)}] 1>pp , )

where G, is the bid distribution of bidder i 2! Note that for n = 2 (9) collapses to (7) divided by two since
bidder one’s bids can also be used in the case of symmetry. We make assumption C to avoid having to
hard-wire a particular set of distributional assumptions into the problem.

We are now ready to state our first theorem.

18Basically, assumption G in Jun et al. (2015) contains a Vapnik Chernovenkis condition, essentially the same as what Kim and
Pollard (1990) call ‘manageability.’

“Note that ﬁ(GT — G) converges to a Gaussian limit process with covariance kernel [G{min(b, b*)} — G(b)G(b*)]/n. Hence
\/f(G;" — G"1) converges to a Gaussian limit process with covariance kernel G"2(b)G"~2(b*)[G{min(b, b*)} — G(b)G(b*)]/n.
Insert Q,(p) = Q(p"/"~D) to get the stated result.

20Note that . . .
ﬁ(GcT -G, = ﬁ(H Gy — H G;) = Z ﬁ(GTi -G)G_y, *)
i=2 i=2 i=2

where G_;, = Hj 41 G- The right hand side in (*) converges weakly to a Gaussian limit process with covariance kernel
2:;2 G_,,(b)G_;;(b")[G;{min(b, b*)} — G,(b)G,(b*)], which produces (9), after noting that G_,, { Q_.(p)} = p/G.{0O.(p)}.

2ITn between the cases considered in (8) and (9), it is also possible that some subsets of bidders are known to have the same
valuation distribution. In such cases, one could pool bids among bidders within groups in order to estimate G,. For example, if there
are two groups of bidders, G, = G:" 71G;7"‘, where G, is the marginal distribution of bids submitted by the n; bidders in the same

group as bidder 1 and G, is the marginal bid distribution for bidders in the other group.

11



Theorem 1. Let assumptions A to C hold. Then ér satisfies ﬁ {ér(-)—e()} w» G, on [0,1], where G
is a centered Gaussian process with covariance kernel H(p, p*) = é’(p)C(p*)H*{Qc(p), Qc(p*)}, where
¢(p) = Q.(p)p for p # 0 and {(0) = 0.

Moreover, for fixed p € (0, 1),

d
VT {ar(p) — a(p)) = o' (p) arg max{G°(1) — & (*/2} (10)
teR
where G° is a Gaussian process described in appendix A. O

It should be noted that weak convergence of quantile processes for distributions with compact support is
usually stated on (0, 1); see e.g. van der Vaart (2000, p308). The reason is that Hadamard—differentiability
only obtains on the interior of [0, 1]. We prove that that weak convergence of our quantile—related process in
fact obtains on [0, 1].

Cube-root-T convergence of ap is not surprising in view of e.g. Kim and Pollard (1990). Indeed,
\3/? {a;(p) — a(p)} has a Chernoff limit distribution at each fixed p under (7) to (9) . If (7) holds then (10)

simplifies to

VTlar(p) - a(p)} > Va2 (p)C. (11)

where C is a standard Chernoff—distributed random variable. Equation (11) is also justified in appendix A.1.

3.3 Nonparametric maximum likelihood

3.3.1 Definition of the estimator. To this point we have relied on the least—squares criterion to motivate
the constrained estimator for e and the isotonic regression estimator for its derivative. The LS estimator has
the feature that it may be broadly applied in any auction or auction-like setting as long as an appropriate
unconstrained estimate e is available. In this section, we develop an estimator based upon a nonparametric
likelihood criterion that specifically exploits the structure of a first—price auction. The nonparametric maximum
likelihood estimator (MLE) has the same asymptotic distribution as the least—squares estimator, but the two
estimators differ in systematic ways in finite samples. In particular, the MLE for a exhibits less finite sample
bias than the least—squares estimator when the true expected payment function is relatively convex, as may be
anticipated when the bidder is strong relative to its maximum of its rivals. In contrast, when many roughly
symmetric bidders compete in an auction, the equilibrium expected payment function is less convex and the
least—squares estimator may be preferred.

For ease of exposition and notation, we assume that only the competitors’ maximum bid is used to
construct the likelihood, though we note how more data may be used to produce a more efficient estimate in
section 3.3.2.

We rearrange the familiar formula for a bidder’s inverse strategy function
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G.(b)

G.(b)}=b ,
a{G.(b)} +gc(b)

in order to relate the density of a bidder’s highest competing bid to her expected payment function:

_e{G.(b)}/b
g.(b) = WG] <b

The loglikelihood of an independent sample of highest competing bids may then be written as

T
Z(@a,eé) = Z{log é, —logb, — log(a, — bt)} , 12)

=1
where the b,’s are the maximum competitor bid and the shorthand forms &, and &, are candidate values for
e{G.(b,)} and the left—derivative of e evaluated at G.(b,), respectively. Before (12) may be used as the basis
for a nonparametric maximum likelihood estimator, a few remarks are in order. First, nondecreasing convex

real-valued functions defined on [0, 1] are continuous on [0, 1),??

which implies that e is uniquely determined
on [0, 1) by its left-derivative &@. We will therefore replace é with a function of & in what follows. Second, for
a given ¢, the implied G, will be a proper distribution function if & is convex and é(1) equals the highest order
statistic among the rivals’ observed bids. Third, because the loglikelihood contribution of b, is increasing in é,
and decreasing in @,, the shape—constrained MLE should be piecewise linear in order to minimize the density
at values of b between realizations of the competitors’ bids while maximizing the density at the observed bids.
In particular, kinks in the MLE &}"F occur precisely where &Y"¥(p)/p = b, for some observed bid b,. We
can therefore maximize (12) by searching over the space of left—continuous, nondecreasing step functions &
defined on the unit interval.

Using these observations, the Lagrangian for the isotonic maximum likelihood problem becomes”3

T T
max (Z{(z — 2)log(@) — b)) — (t = D1og(@) = by_1)} + A(@a) — b)) + Y, A (&g — a<,_1))> , (13)
tit>2 =1 =4

where b, is the 7-th lowest order statistic. This problem can be solved using an efficient pool-adjacent-violators
algorithm (PAVA), which divides the large optimization problem into a sequence of at most 7" — 3 one-

dimensional optimizations. Theorem 2 guarantees the algorithm converges to a global maximum.
Theorem 2. The final iterate of the PAVA is the nonparametric MLE a?le for a. ]

Additional details of the derivation of the likelihood criterion and the PAVA can be found in appendix B.3.

The key steps use piecewise—linearity and continuity of the expected payment function to replace e, in (12)

22A nondecreasing convex function defined on a compact interval can jump discontinuously at the right boundary.
23We omit the constraint &g > @) from the Lagrangian because this constraint is always slack.
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with a function of {«( } ., and by. Cancelling terms and adding the constraints ) > b, and ) > ;_y)
yields the result above.

We next obtain the MLE of the equilibrium payment function by substituting a?le into equation (56).
Figure 3 depicts the maximum likelihood estimator for e in comparison with é; for a sample of five rival bids.
In larger samples, the differences in the estimators for e are not visually apparent.

As can be seen in figure 3, the MLE is invariably above the LS estimator. This is no coincidence. The
nodes of the GCM are positioned at integer multiples of 1/T by construction, whereas the MLE can move the
position of the nodes as well as the values at the nodes. The MLE can therefore achieve both convexity and

proximity to the original nonconvex estimator without having to duck below the original estimator everywhere.
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Figure 3: An illustrative example of the maximum likelihood estimator (dashed) for the expenditure function
compared to the greatest convex minorant €, (solid) of the unconstrained estimator ey (grey).

3.3.2 Alternative characterization of the MLE. An estimate f,(v) of bidder one’s bid function at v can

be obtained as the minimizer of2*

Spb.v) =y, - )1 < b

T
( ) r—1
S \v=by v=byy

The estimator f(v) can be viewed as an inverse monotone regression of something akin to a score function.
This method works because, for fixed b, S; crosses zero exactly one time from above on (b, o) (see lemma 6).

The inverse of f; yields an estimator a?le of a at p = G,(b). Indeed, it turns out that both \3/? {fr(v) - p(v)}

%4To our knowledge, this is the first direct estimator of the bid function in a first—price auction. Although the inverse bid function
estimated using alternative methods can be inverted after monotonizing the estimate (if necessary), this simple, input—parameter—free
estimator of the bid function may be more convenient in some applications.
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and {/? {a?le(p) — a(p)} have limiting Chernoff distributions. Indeed, if (7) holds, we have

V0 <p< 15 VT () - a(p) > {/4C2(0) {2010 + Q' (p)p}C. (14)

where C is a standard Chernoff distribution. A sketch of the proof and a derivation of the limit distribution
can be found in appendix A.2. The limit distribution in (14) is the same as that in (11) under (7). So the
MLE and LS approaches have the same (first order) limit behavior under the same assumptions, but the LS
approach covers more cases.”

In the case of n symmetric bidders, the likelihood of the pooled sample of bids is obtained from (n—1)g(b) =
G(b)/(v — b), which becomes {e(p)/p}'/"=D /{a(p) — Q(p'/"~D)} after a change of variables. The MLE

can then be computed by applying the PAVA to the objective

nT
i £—-1
Z{ —1 log(ag) = b)) = ~— log(ag) = b)) } :

e L

The maximum likelihood estimator for the bid function at a fixed v is then given by the minimizer over b of

nT
£-n £ -1
- 1(b, < b).
fz‘l{ (n=D@=by) m-D- b(ef—l))} o =P

A formal derivation of this estimator’s limit distribution would follow the same outline as the derivation of

(14) in appendix A.2. Similar to the case in which only the highest rival bid is used, we conjecture that the
limit distribution coincides with that of the least—squares estimator in the symmetric case. The maximum
likelihood estimator using the full vector of bids in the asymmetric case is more complicated, because the
mapping from « to the marginal densities of the other bidders’ bids is not one-to-one. Rather than derive the
maximum likelihood of observing an independent sample of rivals’ bids for a candidate a, we can apply the

PAVA to the objective

/ log e(G.. (b)) = log b — log(a(G (b)) — b) dG1(b)

(n-1T

= { 2Ger (bie-1)) = Ger (b)) 1og((s) = bs)) = Ger (bie—1y) 10g(@e) = be—1) } :

=1

where the unconstrained estimator for the highest rival bid is equal to the product of the marginal distributions

of the other bidders’ bids: G, = [] ., G;r. The maximizer of this objective is the monotone inverse strategy

j>1
function « for which the implied distribution of the maximum rival bid is closest (in the sense of Kullback-

25We only consider first order asymptotics in this paper.
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Leibler divergence) to the unconstrained MLE for G, given an independent sample of rivals bids. When there

are n = 2 bidders, the above criterion reduces to the criterion in (12).
4 Smoothing, transformations, and boundary correction

The unsmoothed estimates of the preceding section are sufficient to optimally estimate several objects, such
as the bidders’ ex ante expected surplus or the counterfactual expected revenue in an auction with a different
number of bidders. In these cases, the reader may skip the results in this section and proceed to section 5.

On the other hand, if the researcher is ultimately interested in the valuation distribution, counterfactual
expected revenue under a different reserve price, or other objects that depend on the pointwise rate of
convergence of the estimator for «, then the smoothing methods in this section are needed to achieve the
optimal nonparametric rate of convergence. Indeed, if a is twice continuously differentiable then the \3/?
convergence rate of the unsmoothed estimators of a can be improved to the standard nonparametric 72/ rate.
In this section, we first introduce our basic smoothing method, which replaces the unsmoothed estimator with
its local weighted average and is similar to the smoothing method in LW. We then develop two important
enhancements—boundary correction and transformation—that are needed to achieve the optimal rates of
convergence for a(p) at the boundaries p € {0, 1}. Our analysis and derivations use the LS estimator as the
basis for our results, but that is inessential.

As noted by Hickman and Hubbard (2015, HH), boundary correction can be important in the estimation
of auction models, especially if the objective is to estimate the density of valuations. The reason is that the bid
distribution (in HH) or the distribution of win probabilities (here) has compact support and it is well-known
that, absent a boundary correction, most nonparametric density estimators are inconsistent at the boundaries.
The situation is more favorable in our case since we know that probabilities vary from zero to one whereas
the top of the bid distribution must be estimated, albeit that this can be done super—consistently. We provide
two distinct boundary correction methods, one based on boundary kernels, and one on a boundary correction
scheme in the spirit of HH. As expected, both methods yield vast improvements on the performance of our
uncorrected estimators near the boundary. In developing these methods, we have identified an improvement in
the choice of the bandwidth sequence recommended in Karunamuni and Zhang (2008, KZ), which improves
the performance of HH’s version of the GPV estimator substantially. This improvement is described in a
separate paper, Pinkse and Schurter (2019).

Our smoothed estimators for @ can be further improved by applying a transformation y to the win—
probabilities as part of the smoothing method. Indeed, we show that such transformations y can improve
the first order asymptotic mean square error, though not the pointwise convergence rate, of our smoothed
estimators of . In addition, because the inverse strategy and inverse bid functions can have unbounded

derivatives at the left boundary, our transformation method is required to ensure the mean squared error is
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integrable over [0, 1].2° The effect of such transformations on first order asymptotics help explain the feature
noted in Ma et al. (2019a, Mal9a) that the asymptotic variance of the MS quantile—based—estimator of f, is
often greater than that of the corresponding GPV estimator. These transformation methods are complements,
not substitutes, to our boundary correction methods.

4.1 Smoothing

The main limitation of our method above is that a; converges at a {/f rate. This is due to the fact that a; is
discontinuous and hence that &; is kinky. To obtain convergence at the typical nonparametric n*/> rate, we
can replace ¢ with a smoothed version é;, defined by,
1 [® s—p
e =1 [ k(L) s,
r(P) Y /_ . 7(s) .

where k is a twice continuously differentiable kernel with compact support for which f_°; k(s)s>ds = 1 and

lim,_,_ o |k(s) exp(s)| < 00, and h = hy is a bandwidth such that & = lim_, ., VTh’ < co. The restriction
on the bandwidth sequence is not necessary for consistency of é;: unlike kernel-estimators employed by
others, é; is a consistent estimator of e for all bandwidth sequences that converge to zero and the same is true
for G = &7

This definition of é; requires modification near the boundaries because ;- is not defined outside [0, 1].
We address this issue in section 4.3. Before providing results for smoothed estimates of « evaluated away

from the boundary, we need one further assumption.
Assumption D. Q. is thrice continuously differentiable on any closed interval %, C (0, 1]. ]

Assumption D is essentially equivalent to assuming that g. = G/, is twice continuously differentiable,
which is implied by continuous differentiability of the value densities (GPV). Thus, assuming one more
continuous derivative in assumption A is sufficient for assumption D. Assuming that a density is twice
continuously differentiable is standard in the nonparametric kernel estimation literature. The compact subset

requirement is needed since g,.(0) may be zero.
Assumption E. The bandwidth h satisfies limq_, ., BT /(log T)* = oo and limy_, , Th> < . t

The requirement that lim4_, . #*T /(log T)?> = oo in assumption E is necessary to ensure that é; — e

vanishes sufficiently fast to obtain a Gaussian limit for &;(p). Note that, because lim;_, , Th’ can be zero,

26The transformation is similar in spirit to the change of variable employed in GPV to accomodate the unbounded bid density in
the presence of a binding reserve price. When there is a binding reserve price and bidders are symmetric, the bid density behaves like
1/4/b — r when b is close to the reserve price r. In which case, a consistent estimate can be obtained from a kernel density estimate
of a known transfomation of the data. In this paper, however, we do not know the rate at which a’ diverges as p approaches zero. We
also note that &’ is bounded in the presence of a binding reserve price. Hence, transformations are only potentially needed when the
reserve price does not bind.

27 [ k(s)s® ds = 1 is a normalization.
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we allow for undersmoothing, i.e. one can use a smaller than optimal bandwidth sequence in order to make

the asymptotic bias zero. However, the converence rate is then slower, since y/T h diverges more slowly than

T?/5,

Theorem 3. Under assumptions A to E, ép is convex, has the same limit properties as é; on a closed interval

P contained in (0, 1), and, if B = limy_, o, VTh> then
d
Vpe P : VThiar(p) - a(p)} — N{d"(nE/2, 7'},

where 7 (p) = lim,_o [* [* F4(p, s, DK (s)K'(3) d5 ds, with

Z,(p,s,5) ={H(p+ sh,p+5h)— H(p+ sh,p)— H(p,p+ 5h)+ H(p,p)}/h.

5)

O]

The variance formula in theorem 3 is intimidating, but in many cases it simplifies substantially. First, as

noted following assumption C, if G, is taken to be the empirical distribution function of the maximum rival

bid then (7) holds.

Lemma 1. If (7) holds then

H(p, p*) = {(p)¢(p*){min(p, p*) — pp*},
and ¥ (p) in theorem 3 simplifies to ¥ (p) = {*(p)k,, where k, = f_o; k2(s) ds.

Since k is chosen, 7" is easy to estimate.

A second simplification obtains under full symmetry, i.e. when (8) holds.

Lemma 2. If (8) holds then

* 1 . * — * — * — * —
H(p,p") = —{min(p, p)!/*=" = (pp*)/*=D}pp* Q' (0" ")0'(p* /1),

Further,
p /=D Q2 (pl/ =Dy Med(s, 5, 0)||
nn—1) ’

lim 7, §) =
hl_I)I}) h(pa s, S)
and V" simplifies to p"/ "D Q" (p"/ "Dk, [ {n(n — 1)}.

Finally, we provide a result for the asymmetric IPV case with n bidders.

Lemma 3. If (9) holds then

08 S 1
H(p,p") = pp” -
(.5") = LD )pp ;(Gi[Qc{max(p,p*)}] )
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Further,

lim %, 5.5) = (D)0L(2) ), G2, (0c(p))1{0.(p)} Med(s. 5, 0). (19)

i=2
where G_;; means the distribution of the maximum bid of all bidders other than i and 1 with G_;; = 1 if there
are only two bidders. Finally, 7" equals KzCz(p)QZ(p) >, GE“ {0.(p}g:{0.(n)}. O

Note that for n = 2, the result in lemma 3 reduces to that in lemma 1. For n > 2, the function H in
lemma 3 is generally more favorable, i.e. it is more efficient to estimate each rival bid distribution separately
than to estimate the distribution of the maximum rival bid using only the maximum rival bids.?8

A more interesting comparison is that of the formulas for 7" in lemmas 2 and 3 if there is symmetry.
Indeed, the ratio of variances is (n — 1)/n in favor of exploiting symmetry. This result is intuitive since
exploiting symmetry means that one can also use the bids of bidder one to estimate G,: one then uses data on
n bids per auction instead of n — 1.

One limitation of theorem 3 compared to theorem 1 is that theorem 3 does not extend to all of [0, 1] due
to boundary effects. A second issue is that the bias of &, can be large for small values of p as the following

example illustrates, even though the variance is vanishingly small near p = 0.%°

Example 1. Consider the symmetric case with F, a standard uniform and n = 3. Then e(p) = Q.(p)p =
2p32/3 and "' (p) = —p~3/2 /4 - —0 as p | 0. O

We address each of these limitations in turn, beginning with the large bias for p close to zero.

4.2 Transformations

Because the bias in our estimate of @ can explode at the left boundary while the variance is vanishingly small,
a natural solution is to use a smaller bandwidth near the left boundary than elsewhere.3° Because we also know
a little about the shape of a near zero, e.g. that Q (p)p converges to zero, rather than use a variable bandwidth,
we prefer to introduce an estimator that uses transformations: a variant of this estimator can be found in
appendix B.4.1. Let y be an increasing function such that for j = 1,2, 3, e¥)(p)/yw"/(p) and wY)(p) /y"/ (p)
are uniformly bounded on (0, 1] and for which limp 10 of each of these functions is finite, also.>! Then define

ar, () = % /_ N w'(s)aﬂs)k(M) ds. (20)

o]

28For the case in which rival distributions happen to coincide but this fact is not used in the estimation, 7 in lemma 3 reduces to
K, 2(p)p™~2/=1 which equals 7 in lemma 1 if n = 2 or p € {0, 1} but is otherwise less. More generally, note that 7 in lemma 3 is
Y, G 8/ X, G, which is equal to k,¢? and hence to 7 in lemma 1if G_;; = 1,i.e.ifn=2o0rp=1.

2The GPV estimator also has the unbounded bias at zero problem.

Interestingly, this contradicts the typical practice of using a larger bandwidth near the boundary when estimating a density with
boundary kernels.

3By y'/ we mean the derivative of y raised to the jth power.
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To see how (20) can alleviate the exploding bias near zero, we use the change of variables z = [y (p)—w(s)] / h

and note that the second—order term in a Taylor expansion of a{y ' [w(p) — zh]} around a(p) involves

o«"(p) _ ")

21
w'2(p) w3 (p) @b

A standard argument in kernel based estimation then implies the bias is proportional to (21) if k is a second
order kernel. If y is chosen such that ' in the denominator is large enough, the asymptotic bias will be finite
near zero. The asymptotic bias is zero if one chooses y = @, which is unfortunately infeasible because « is

unknown.?? A feasible choice is illustrated in example 2.

Example 2. Recall example 1. If one uses w(p) = log p then yw'(p) = 1/p, w" (p) = =1/p?, and y'""(p) =
2/p3. This yields for instance o' (p)/w'*(p) = —\/E, which is well-behaved near zero. One can verify that
the other ratio in (21) is equally well-behaved.

Note that our solution does not only work for n = 3. Indeed, in the symmetric case with arbitrary n,
e(p) = (1 = 1/mp"/ =V, such that o (p) /y"*(p) ~ p"/"=".

The same goes for the situation in which there are n — 1 stronger rivals. It really does not matter since

each derivative of e removes a power of p and each negative power of ' restores one. O

Example 2 shows one choice of y, indeed a conservative choice. In fact, it is guaranteed to eliminate
the bias at p = 0 in any feasible auction mechanism, because a’(p)p and o'’ (p)p* must converge to zero as p
approaches zero in order for « to be finite for all p in a neighborhood of zero. We note, however, that this
choice makes the variance larger near zero and possibly unbounded.

4.3 Boundary correction

When computing é; at values of p near the boundary or using a kernel with infinite support, the locally
weighted average of é;(s) attempts to put positive weight on values of €, for which € is undefined. If
one does not make adjustments to the kernel k or the definition of é; outside of [0, 1] then a(1) will not be

consistently estimated, as the following example illustrates for ar,,.

Example 3. The estimator &;?S(p) =h"! /01 u/’(s)(xT(s)k((w(p) - l;/(s))/h) ds is inconsistent at p = 1. To

see this, note that

Ty h

—ba 1, 1) -
b d(l)zﬁ/o u/(s)aT(s)k(M)dS=

1, (D) = y(s) 0 1)
z/0 1,/(s)o:(s)k<%)ds+o,,(1):a(l)/_oo k(=s) ds + 0,(1) = “T+op(1),

32Perhaps a two—step procedure in which an inefficient estimate of a is obtained in a first stage to inform y is feasible. We do not
explore such a procedure here.
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by consistency of ay and substitution of s < {w(s)—w(p)}/h. This is the well-known boundary bias problem

of nonparametric kernel density estimators. [

If the lower end of the valuation’s support is zero then a(0) = 0 and the estimator &%‘}(0) is a consistent
estimator of a(0) = 0. Note that the problem persists regardless of y.

There are many solutions to this problem. The traditional approach is to use a ‘boundary kernel,’ i.e. a
kernel that scales the kernel to make up for the lost mass if a function is estimated near a boundary. We discuss
this possibility in section 4.3.1. A second possibility is to make use of techniques similar to those espoused in
KZ in order to “make up” values of e and a beyond [0, 1]. This approach is investigated in appendix B.4.3.33
4.3.1 Boundary kernels. The boundary bias problem can be addressed by the use of boundary kernels.

We replace (20) with

1 —_—
iy D)= /0 v ar k(LD ) as (22)

where, for each p € [0, 1], the function k(- {p) is a boundary kernel defined now. An alternative to (22) is
(60) in appendix B. Let o, = {w/(1) — w(p)}/h and v, = {y(0) - w(p)}/h. Then we require kyp to be such
that forall p € [0,1], j =0,1,2,

D,

v
i S kCstpds =11l (23)

where the requirement for j = 2, p € {0, 1} is replaced with boundedness. The requirement that the kernel
integrate to one is to ensure consistency in view of example 3. We also want it to integrate to zero if multiplied
by s to kill the ‘A term’ in a bias expansion. The cut—out for j = 2 and p € {0, 1} in the requirements for the
boundary kernel is there because the requirements on / szkwh(—s) only affect the ‘bias’ in the asymptotic
distribution and because it simplifies the formula for the boundary kernel. Such boundary kernels are easy to
construct from second—order kernels, as lemma 16 demonstrates using the Gaussian kernel ¢p. A formula for

a boundary kernel that satisfies (23) for j = 2 and all p € [0, 1] is provided in lemma 17 in appendix A.

Assumption F. The transformation y is thrice continuously differentiable on (0, 1] with w' positive. Further

the function ¥(s) = a{y~1(s)} is twice continuously differentiable. ]

The extra assumption on ¥ in assumption F only has bite at s = y(0). The concern is that g.(0) = 0
in which case Qé (0) = o0 and derivatives of a at zero can be infinite. For instance, for power distributions
QO.(p) = p? for some y > 0, such that a(p) = (y + 1)p”. Taking y(p) = log p yields ¥(s) = (y + 1) exp(sy),
which satisfies assumption F. Less concave choices of y may work better but require some knowledge of the

curvature of Q, near p = 0.

3Gimenes and Guerre (2019) smooth the quantile function using a local polynomial approach. The problem studied therein is
otherwise unrelated.
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Theorem 4. Suppose that k,,, is constructed as in lemma 16, that assumptions A to F are satisfied. Then

d - -
Vp € (0,11 : VThiar, () — a(p)} = N{B,(p), 7, ()}, where B,,(p) = expression (21) X E/2 and
7, @) =" () lim / / ¢ ()¢' O {p. s/v' ), 5/v' ()} d5 ds,

where #;, was defined in (15). For p = 1, 9§W, 7, are finite. Under (7), 7,, simplifies to G2 (P (p) =
o' (p)/ /7. O

Finally, lemma 4 illustrates that the integral in (22) is easy to compute because a is a step—function.

Lemmad4. The formula for ary, simplifies to &Tw(p) = Z}Tzl aTjAw-(p), where Ay, (p) = Kwh{—vj_l (pip}-
Kwh{—vj(p)ip}, with Kyp= f kyn and v;(p) = {w(j/T)—w(p)}/h. For kyp as constructed in lemma 16,
Ky n(s) = @, D(s) + @0 P(s). ]

4.4 Derivative estimators

As we will see in section 5, the density of the value distribution depends on a’, not on «a itself. Although the
primary objective in our paper concerns estimation of derived objects like the bidder surplus, we include
results for the value density in the interest of completeness. For that purpose, we derive some results for an

estimator of «’, both away from (theorem 5) and near the boundary (theorem 15 in appendix B).

Theorem S. Let (i) assumptions A to C be satisfied; (ii) Q. be four times continuously differentiable on any
compact subset of (0, 1); (iii) k be the Epanechnikov kernel; (iv) lim;_, \/ﬁ = B, < oo. Then, at any
Jixed) < p <1,

VTR &, ()~ ' (0)) > N (B0 7 ).

with BR(p) = B (a""w'> =3a"y""w' —a'y""w' +3a'w""?) [ (10y"*), where all a,w'’s are evaluated at p, and

1,1
780 = 2w ot [ Hlps v 0.5/ ) a5 .
0 /-1 /-
If (7) holds then 7 R(p) simplifies to (3/2)1;/’3(1))(2(1)). If (8) holds then 7 R(p) simplifies to

3D ety 2y 1)
—2n(n—1)p o~ (p )- (24)

Simplifying expressions for F,, a and their first three derivatives in the symmetric case can be found in lemma 9

in appendix A.5. [

Observe that the optimal convergence rate is the same as that for nonparametric kernel derivative estimators,
namely T2 for h ~ T~ as expected. Note further that, like before, the scale of y and the bandwidth A

are interchangeable. Again, the optimal yet infeasible choice of y in terms of the asymptotic bias is ¥ x a.
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5 Derived objects

Applied researchers typically are not directly interested in the private values that rationalize a particular
sample of bids, but may estimate these so—called pseudo values in order to construct other estimates. For
instance, the sample of pseudo values may be used to obtain estimates of the bidder’s expected surplus.

The same comment applies to the density of the private value distribution: because the marginal value
distributions are the primitives of the model, i.e. any counterfactual outcomes or other objects of interest may
be computed using the private value distribution, estimating the (density of the) pseudo values accurately
is considered a goal itself in a good chunk of the literature. This intermediate step may be unnecessary or
undesirable when the ultimate target of estimation can be written in terms of higher level objects.

In each of the examples below, the object of interest can be expressed as 6(a, F,), where 6 is a known
function, and we estimate the object by plugging in some combination of estimates of a and F,,. There are
two overarching themes in the following discussion. First, the asymptotic derivations are greatly simplified
by the fact that F), is known in any symmetric equilibrium; we can expect significant improvements in finite—
sample (and often also asymptotic) performance when we plug in the true F), as opposed to an estimated
distribution and pool bids across bidders to more accurately estimate the rival bid distributions. Second, we
may expect the plug—in estimator for 8 to be ﬁ —consistent and asymptotically unbiased** when 6 takes
the form 0(a, F,) = f 6,(a) dF, for an appropriately differentiable function 6, as is often the case when
integrating over nonparametrically estimated objects.

We now turn to a discussion of individual objects to be estimated, first assuming the researcher exploits

symmetry both by substituting

— 1 _ _
F,(p) = p/=D  and fp(p) = mp& n)/(n—1) (25)

and by pooling bids in the estimation of Q, so that (8) holds. We later revisit some of the results under
asymmetry. Although not the primary objective in our exercise, we briefly discuss how to estimate the value
distribution function, quantiles, and density function in section 5.1. We then turn to some objects of greater
interest to us, namely the bidder surplus, the mean of the value distribution, profit as a function of the number
of bidders, and profit as a function of a hypothetical reserve price.

5.1 Value distribution

There are different attributes of the value distribution that can be estimated. The easiest object to recover
is the quantile function. Letting Q,, Q,, and Q » denote the quantiles of bidder one’s values, bids, and

win—probabilities, note that since v = a(p) = a{G.(b)},

3By ‘asymptotically unbiased’ we mean that the limit distribution has mean zero.
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0,(7) = a{Q,(1)} = a[G {Qy(1)}]. 7 €[0,1],

which simplifies to a(z"~!) in the symmetric case. The functions G,, Q, can be estimated ﬁ —consistently,
but not so for a as our results thus far have shown. So even though we are estimating quantiles, namely
quantiles of the value distribution, these quantiles cannot be estimated at the parametric rate because the
values are not observed. Indeed, the limit distribution of an estimator QU(T) of Q,(7) is simply the limit
distribution of aT(r”‘l) in theorem 3 with the variance derived in lemma 2. Likewise, the value distribution
function is simply

F,(v) = Fp{a_l(l))} = a_l(u)l/("—l).

By the delta method, the limit distribution is given by a="(v){a~'(v)}#"/@=D /{(n = 1)} times the limit
distribution of a;. Note that the delta method is only valid for v # 0, §, which is of little consequence since
we already know the values of F,(0), F, (D), albeit that uniformity arguments would suggest that the implied
asymptotic distribution would not reflect the finite sample performance near 0 and 1, although the convergence
rate is still 72/° for the same reason that ér converges at the ﬁ rate on the entire interval [0, 1]: see the
comments in the paragraph following theorem 1.

To estimate the valuation density in the symmetric case, we note that the value density function is

{a—l(v)}@—n)/(n—l)
(n—Da'{a"'(v)}

f,0) = (f,/a) e (v)} =

and hence requires an estimate of a’, which we provided in section 4.4. Again by the delta method, the
aymptotic distribution of the value density estimator is —[a~ Y (v)]@ /(=) Jl(n—1a’ {a~'(v)}?] times the
limit distribution of the estimator for &’. From (24) it follows that the bias and variance of our estimator of

the value density at v = a(p) are given by

%Symm(p) _ p(2—n)/(n—1)

r R
D P S T R

and

301 - 193 () P Q2 (piT)
2n> {Q’(pﬁ) +p1/(”‘1)Q”(pﬁ)/n}4
_ 3 =DwG )} G Hh)e®)
- 2n {g%(b) — G(b)g'(b)/n}*

symm _

For w(p) = Q.(p) (or indeed a suitable estimate thereof) our variance coincides with that of MS, theorem 2.
Mal9a note that the variance of the MS estimator exceeds that of GPV for the same choice of kernel and

bandwidth if one undersmooths, i.e. if one chooses a bandwidth which makes the bias disappear faster than
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the variance. Mal9b point out that the variance of the GPV estimator exceeds that of their estimator, again
using bandwidth sequences that undersmooth both estimators. We recommend against undersmoothing for
the purpose of estimating a and note that y = Q, is not optimal.>

5.2 Bid function

Note that the bid function at v is simply Qc{a‘l(u)}, and that Q, can be estimated ﬁ —consistently. Hence
the limit distribution of our bid function estimate is simply Q' /&’ times the limit distribution of the estimate
of « used. Since the bid function estimate uses an estimate of the inverse of «, the estimate of a had better be
monotonic: this is yet another advantage of imposing monotonicity from the outset.

5.3 Bidder surplus

We now turn our attention to estimation of the bidder’s expected surplus, which will be of interest to the
researcher wishing to quantify the distribution of the total value of trade between bidders and the seller. The
expected surplus may also be useful in estimating some models with endogenous entry in which bidders incur

a cost to observe their private values. The surplus for bidder one is given by
1
BS = E{(V, - BN1(B, < B))} = / A(p)f,(p) dp, (26)
0

where A(p) = a(p)p — e(p) = Q(p)p*.

One would expect ﬁ —consistency despite the presence of nonparametric objects in the definition of
BS. This is a common theme in the semiparametric econometrics literature (see e.g. Robinson, 1988; Powell
et al., 1989). Even though nonparametric estimators, other than e.g. the empirical distribution function,
typically converge at a rate slower than ﬁ , integrating them often restores the parametric ﬁ rate. The
reason is that integrating is like averaging and hence reduces the variance, which opens up the possibility of
undersmoothing to make the bias vanish at a rate faster than ﬁ . Note that if the unsmoothed estimator a is
used, no adjustment of smoothing parameters is needed at all since no smoothing is conducted in the first
place. It does not appear to matter for the asymptotic distribution of our estimator of BS whether or not a
smoothed estimator of BS is used, as long as it is undersmoothed.

Bidder symmetry simplifies the asymptotic theory since integration by parts and (25) turns (26) into

31In the nonparametric kernel estimation literature, undersmoothing is sometimes used as a device to obtain asymptotic validity of
an inference procedure. For the purpose of estimation, however, undersmoothing is unwise since estimators then converge more
slowly. Second, the linear expansions (30) provided in section 5.6 suggests that the observation in Mal9a is due to the use of a
one-step instead of a two—step estimator. Finally, Mal9a do not employ transformations like y, which can yield a smaller variance.
Indeed, for the infeasible choice y(p) = ca(p) for ¢ > 0 one obtains a bias of zero and a variance equal to

3K, G2(b)g(b)
n2(n — 1){g2(b) — g/(b)G(b)/n}’

which can be made small by choosing ¢ small. Thus, any gains one obtains from doing a two—step procedure can be obtained by
making a different choice of y and kernel or bandwidth. But bear in mind that since this is for an infeasible choice of y, one cannot
simply implement the optimal choice of y and drive ¢ to zero in order to kill the bias and get superconsistency.
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e(1)

n—1

BS =

! 1 2—n
—/ AP0+ 2P} dp = 22 nfl/o e dp,

which can be estimated by

. symm éT(l) n /1 o 2-n
BS = - é 1 dp.
1 m-12/, r(p)pr1 dp

-~ Symm
The asymptotic theory for BS Y™ is trivial in view of theorem 1.

—~~ S d Q
Theorem 6. Under the assumptions of theorem 1, ﬁ (BSbymm —BS) = N(O, %ggmm), where

gy _ //H 1 dpdp* O
e TR (p,p*) (pp*)=1 dp dp*.

From (8) it follows that

symm _ L L * 1 . s 1/(n—1) w1 /(n—1) "
7ss (n— 1)+ / / )0’ (p"* ) (pp*)*=T {min(p, p*)'/ — (pp*)V/™=V} dp* dp

(n_ T / / Q' (MO’ (P")(pp*)"™ {min(p, p*) — pp*} dp” dp,

which equals

b b
” : 7 / / G" 1 (B)G" (b")[G{min(b, b*)} — G(b)G(b*)] db db*, @7)
- 0 JO

where we provide (27) if readers would like to compare it to a future GPV-based estimator.

5.4 Mean of the value distribution

We next consider the mean valuation as an example of a functional of the value distribution that one can
estimate at the typical parametric rate of convergence. The mean valuation might be of direct interest to the
researcher or used to compute test statistics as in Haile et al. (2003).36

The mean of the value distribution of bidder one is

D 1
MV = /0 vfp(v)dv = /0 a(p)f,(p)dp (28)

d ,
Theorem 7. Under the assumptions of theorem I, ﬁ /01 {ar(p) — a(p)} dF,(p) — N(O, Wl\?{,mm), where

I = (0= 22— 1) [} [ H(p, p*)(pp*) =20/ dp* dp, which under (8) simplifies to

3Haile et al. (2003) constructs a statistic under the null hypothesis that bidders have affiliated private values and a rejection of the
null hypothesis is interpreted in favor of the alternative hypothesis that bidders’ values are interdependent. One could use similar
ideas to test the null hypothesis of independent private values with exogenous participation against various alternatives involving
interdependent values or selective entry.
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(n—2)*
(n—1)%n

1 1
/ / O'(p)Q’ (p*){min(p, p*) — pp*} dp* dp,
0 0

which can alternatively be expressed as [(n—2)*/{(n—1)?n}] fOB /OB[G{min(b, b))} —=G(b)G(b*)]db*db. [

Note that the asymptotic variance in theorem 7 equals zero if n» = 2. This is intuitive since then the mean
of the value distribution is simply b, which can be estimated super—consistently. Naturally, this property
evaporates when we examine the asymmetric case in section 5.6.4.

The symmetry assumption is also easy to exploit without using our machinery, because G,(b)/g.(b) =

G(b)/{(n—1)g(b)} and

b b 7
MV=/ bdG(b)+/ GO g = b+ =2EL
0 0 }’l—l I’l—l

Since the upper bound of the bid distribution can be estimated at a rate faster than ﬁ , estimation of MV by
replacing b and Eb with their sample counterparts would work, also. So for the purpose of estimating the
mean of the value distribution in the symmetric case, our methodology is probably overkill because estimating
the inverse strategy function is not a necessary intermediate step.

5.5 Profit

Estimating the seller’s profit is a trivial exercise (if the seller’s valuation is zero as we assume throughout)
since profit is simply the sum of the winning bids. A more interesting object is profit as a function of a
hypothetical reserve price r, PR(r), or number of bidders PR*(n).

In the asymmetric case, this is a complicated endeavor. Indeed, using the machinery described earlier in the
paper we can recover the value distributions for each bidder. However, there is generally no analytical solution
for the bid function in the asymmetric case like there is in the symmetric case. We must therefore numerically
solve for the counterfactual equilibrium bid distributions in order to compute the counterfactual revenue.
Because this method does not depart from the existing literature, we limit our discussion to the symmetric
case, where we do have suggestions for how to exploit the symmetry assumption in the counterfactual analysis.
Since the theoretical results here are similar to those obtained earlier in terms of method of proof, we state the
results in the text instead of stating them formally.

5.5.1 Counterfactual number of bidders. We have repeatedly made use of the fact that F, is a known
function of n, the number of bidders. F), is still a known function of any counterfactual number of bidders
m, possibly different from n. In addition, the counterfactual expected payment function is a known function
of the factual expected payment function if the distribution of valuations is held fixed. Specifically, the

equilibrium a for a given number of bidders 7 satisfies a(z"~!; n) = Q,(z) for all n, 7, which implies that for

27



E=¢,=m—1/(m—-1),a(p;m) = a(p®;n) forall p € [0,1] and n,m > 2.3
The counterfactual expected payment function is then e(p; m) = fop a(t%) dt and the expected revenue is

given by

1 1 1
PR*(m) = m/ e(p;m) dF,(p;m) = m/ /p a(t®) dt dF,(p; m) = m/ a(p){1 — F,(p;m)} dp =
0 0 0 0

1

){2+1 ¥ ,1/1+1

m p* - p*' )e(p) dp,
/0( ¢ 3 )

where y; = (m—2n+j)/(n—1).
Following the previous examples, a plug—in estimator for PR*(m) in which we substitute an estimate of e
and the known F,(-; m) converges at a ﬁ —rate. Indeed, the limit is a mean—zero normal distribution with

variance

1 1
mz/ / H(p,p*)<b+1p“— 4 +1P)“><x2—+1p*“—11+1p’““>dp* dp.
o Jo ¢ 4 ¢ 4

5.5.2 Counterfactual reserve prices. By (1) in Jun and Pinkse (2019), we have PR(r) = 0 — rF)/(r) +
fr E{F 2(v) —nF :‘l(v)} dv. Using the substitution p = F, (v) the problem then entails finding p* = F If‘l(r)
for which

1 I3 2-n
PR{a(p")} =n<p*a<p*>(1—p*1/<"—“) +ﬁ / / a(u) du pr dp) (29)
- p* Jp*

It should be apparent from our earlier discussion that since « is estimated at a slower—than—parametric
rate, the first right hand side term in (29) is estimated at a rate less than ﬁ but the second right hand side
term in (29) can be estimated at the typical parametric rate. The asymptotic distribution is hence determined
by the estimation of F,(r), which was already discussed in section 5.1. The choice of bandwidth should
therefore be made with an eye toward the precise value or range of values of counterfactual reserve prices
under consideration.

To conduct inference on the optimal reserve price would require that we derive the limiting process of
\3/? (ap — a). Since we know the convergence rate of the estimator of the optimal resrve price to be {/f ,
one could use subsampling. Also note that our assumptions on the value distribution are not sufficient to
guarantee a unique globally optimal reserve price. One can proceed by restricting the value distribution or by

focusing on the minimal solution when multiple exist as in Jun and Pinkse (2019).

¥ Note that the bid distribution changes with n but the value distribution remains constant. Indeed, Q,(r) = Q(z; n)+7Q'(z; n) /(n—
1) defines Q(-; n) as an implicit function of Q,: Q(z;n) = '~" /O,H 0, /@1y dr.
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5.6 Asymmetry

When bidders are asymmetric, we must substitute (7) or (9) for (8). Moreover, when the object of interest
is \/T—consistent, we must also consider the contribution of the estimation error in the win—probability
distribution. In this section, we first discuss an estimate of the win—probability distribution then provide a set
of results analogous to the earlier theorems proved in section 5.

5.6.1 An estimate of the win—probability distribution. To estimate F »» We note that, in a high-bid auction
with bidders whose valuation distributions are not identically distributed, the equilibrium distribution of win—
probabilities for bidder is F,(p) = G{O,.(p)} 3% The distribution F, » can then be estimated in a straightforward
fashion as F,p(p) = Gp{Q.r(p)}, where G and QO are the empirical distribution of bidder 1’s bid and an
estimate of the quantile function of its highest competing bid. The weak convergence of this process on (0, 1)
is closely related to the extensively studied “copula process” and the fact that the marginal bid densities are

strictly positive on their compact support.

Theorem 8. ﬁ (F T~ F, p) -~ G o where G ) is a Gaussian process with covariance kernel

Fp{min(p, p*)} — F,(D)F,(p*) + (), (0" ) H*{Q..(p), Q. (p™)}. o

Recall that H*{Q,(p), Q.(p*)} can be as simple as min(p, p*) — pp* in case only the maximum competitor
bid is used: see (7).

5.6.2 Value Distribution. Because the valuation distribution and quantiles converge more slowly than F,,
the asymptotic distribution of these estimators will be the same as in the symmetric case if we substitute F,r
for F,.

The density estimator merits further discussion for the sake of comparison with other methods and
because there are two ways to estimate the value density: one—step and two—step. For the one—step estimator,
one substitutes an estimate of the win—probability density evaluated at a~!(v) for f - By the delta method,
the asymptotic distribution of this value density estimator is again —(f, » Ja'*){a~(v)} times the asymptotic
distribution of the estimator for a’. We caution that f » may be unbounded near p = 0, which could lead to
poor finite—sample performance at small values of v.

With the two—step estimator, one first generates valuation estimates by doing e.g. 0, = @r,, { G r(b,)} and
then plugs those estimates into a nonparametric kernel density estimator. The two—step estimator is analogous
to GPV except that our first step is different. Since the second step of both estimators is the same, we only
need to compare the first step of the two estimators. It can be shown?® that both the first step in GPV and
our smoothed estimates of « (first step of the two—step version of our estimator) permit asymptotic linear

expansions of the estimator minus its expectation at b = Q.(p),

%A high-bid auction is one in which the highest bidder wins with probability one.
¥ Derivation not provided here.
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T
G.(b b,.—b
_{ 1 Z a )k( <t > —its expectation} (GPV),

Th & g2(b) h
1 (b) G.(b,)—p . .
3 —{ Th 21 0 ( Y ) —its expectatlon} (ours), (30)
T
_{ Tlh Z "{G.(b)} :((:)) k( W{Gc(bci} _ l;/(p)) —its expectation} (ours with ),

L

The first two formulas in (30) are similar, but note the different arguments to the kernel and the fact that one
denominator has a square on g, and the other one does not. The formula with y simplifies to the one without
for y(p) = p and to the GPV expansion for y(p) = Q.(p). However, the bias of our estimator with y = Q.
does not coincide with that for the first step GPV bias: either can be greater.

5.6.3 Bidder Surplus. A natural generic estimator of BS in the absence of a symmetry assumption is

BS = /{ar(p)p—er(p)}d o1 (D) €2y

Naturally, @ can be replaced with a smoothed version in which case it would be advisable to replace é; with

the estimator of e corresponding to the smoothed estimate of a, also.

Theorem 9. Under the assumptions of theorem 1, if G, G, are estimated using different data and G is the
~ d
empirical distribution function of bids of bidder one then ﬁ (BS — BS) - N(O, WB"S), where

1 1

with H} (¢, q*) = G{min(q, ¢*)} = G(q)G(q*), T,(p) = &' (p)p, and T (p) = Q! (P)p* f,(0) + QL (D) (" f(P) +
4pf p(p)}. Under (7),%° the asymptotic variance becomes

G2 b GZ b b b,
Y C(>+\/< (bgbo) / G(1g(®) dt>, (33)
0

2.(b) g2(b,) £

which is the semiparametric efficiency bound for estimators of BS which only use bids and maximum rival

bids for estimation. [

The asymptotic variance in (32) is intimidating but it simplifies considerably in an important special case,
as (33) illustrates. The fact that our estimator achieves the semiparametric efficiency bound should come as
no surprise since our estimator is asymptotically linear and imposing shape restrictions is well-known not to

help in reducing the asymptotic variance in many cases.*!

“0Le. if one uses an estimator based on the maximum rival bid.
#ISee Newey (1990, page 106) for a discussion and Tripathi (2000) for results on the semiparametric efficiency bound subject to
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Note that the semiparametric efficiency bound is defined only relative to the amount of information
available. For instance, if one uses all bids instead of only the maximum rival bid then (32) is less than (33)
but still achieves the semiparametric efficiency bound. We do not show this. Nevertheless, it is reassuring
that no other regular estimator exists with a smaller asymptotic variance under the same assumptions.

It is not immediately obvious that the variance in theorem 9 is worse than that in theorem 6, albeit that
the fact that a more efficient estimate of G, can be used should tip the balance. We provide a comparison in

the least favorable case for symmetry, namely that of two bidders.*

Example 4. Suppose that n = 2 bidders are symmetric and F,(v) = v'/" for some y > 0. Then b= 1/(1 +7y),
G(b) = G, (b) = {1+ b}/, (0.} = AL+ 1" [y {0} = 1+ > =)'~ /7% Op) =
0.0 =p /(47,0 =0, =yp~ [ +7), Q" = Q/ = y(y = D2 /(1 + ), and e(p) = p'*' /(1 + 7).
Thus, from (27) it follows using some tedious calculus that

27/2
symm _
BS 1+ 72Q+7)23+2y)

which equals 1/90 for a uniform value distribution. To obtain Vg note that Iy (p) = yp?, I'j(p) = y(3 +
N’ /(1 +y), and H*{Q.(p), O.(p*)} = H{O.(p), Q.(p*)} = min(p, p*) — pp* which (after some tedious

calculus) yields
e 2PGH+4+7Y)

BS T (149224723 +2r)

which equals 1/9 in the uniform F, case. The variance in the asymmetric case is 5 + 4y + y? times as large
as in the symmetric case. Since assuming symmetry speeds up convergence of ér and obviates the need to

estimate F,, it was clear that the ratio would exceed two. But in the uniform F, case the factor is ten!™ [

More generally, the variance relatively large 7/ is due not only to the estimation error in F,, which is
reflected by the term involving I'; in (32), but also to the fact that Q. is estimated off the maximum rival bids
as opposed to combining estimates of the marginal bid distributions for each rival bidder. Indeed, using (9)
with #n > 2, the variance reduction will be more modest than under (7). Nevertheless, the conclusion from
example 4 must be that symmetry should be imposed whenever reasonable.

As it turns out, smoothing does not improve the asymptotic distribution, and too much smoothing can
introduce an asymptotic bias and slow down convergence. The most important consideration is that the
implied estimator of e converges (after norming and scaling) to the same Gaussian limit process as € which
for the smoothed estimator simply requires that 4 — 0 fast enough as ' — co. We state the theorem for ar,,

but the result applies with minor modifications to any estimators which satisfy the afore—mentioned desiderata.

shape restrictions in the partially linear model of Robinson (1988).
“2With more than two bidders, the gain in efficiency of estimating G, is greater.
43That’s not a factorial.
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Theorem 10. Suppose that the assumptions of theorem 4 are satisfied. Then the same limit distribution

obtains if one replaces ar, ép in theorem 9 with ar,,, ér,, and chooses a bandwidth h which tends to zero

W
faster than T~'/4, [

Note that the bandwidth can tend to zero arbitrarily fast since a bandwidth of zero simply takes us back to
the unsmoothed estimator. This is in sharp contrast to other approaches, e.g. one based on the estimator of the
inverse bid function in GPV, where taking the bandwidth to zero before taking the sample size to infinity
would blow up the asymptotic variance: letting 4 | 0 with GPV does not produce a consistent estimator
of g., g, a. Consequently, it is not clear a priori that using a second order kernel and undersmoothing GPV
would produce a consistent estimator of BS, let alone a ﬁ—consistent estimator. We have no theoretical
results on this, though our simulation results suggest that letting the bandwidth go to zero in a GPV-based
estimator of BS would break ﬁ—consistency.

5.6.4 Mean Valuation. Inthe asymmetric case, we estimate the mean valuation by MV = fol ap(p)dF,r(p).

The asymptotics for MV are similar to those for BS and the proof is therefore mercifully short.

——~—— d
Theorem 11. Under the assumptions of theorem 1, ﬁ MV =MV) = N(0, 7y ), where %I\I/IIV is like W;S
with I', I, divided by p. O

6 Monte Carlo simulations

We provide a simulation study to compare the performance of our estimators for a representative set of objects.
In the category of ﬁ —consistent estimators, we consider the estimation of the bidder’s expected surplus
and the mean of the valuations. Because the bidder’s surplus is f {a(p)p — e(p)} dF,(p), the behavior of
the estimator for a near p = 1 is relatively more important than for small values of p (the seller’s expected
revenue in a symmetric equilibrium with a counterfactual number of bidders is similar in this regard). By
contrast, the behavior of a near p = 0 plays a more important role in the expected valuation f a(p) dF,(p),
especially when the bidder is strong relative to its competition, because the win—probability density is then
unbounded near zero. In the category of \/ﬁ—consistent estimators, we examine the behavior of estimators
of the valuation distribution function and its quantiles, including the maximum valuation. As a “primitive” of
the model, the valuation distribution is an input to many other objects of interest. Hence, these objects derive
their asymptotic properties from the estimator of the valuation distribution. For example, the dominant terms
in the asymptotic expansion of the seller’s counterfactual expected revenue with a higher reserve price depend
only on the behavior of the estimator for the valuation distribution at the reserve price. The quantile function,
particularly at the endpoints, demonstrates the behavior of the boundary correction routines. And finally,
in the category of \/T_h3—consistent estimators, we consider the estimation of the density of the valuations.

As discussed in section 5, the dominant terms in the asymptotic expansion come from the estimator for the
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derivative of a, but the valuation density also highlights the finite—sample benefit of substituting the true
win-probability density f, when it is known rather than an estimate, especially when f,(0) is unbounded (i.e.
there are more than two symmetric bidders). Our goal is not to crown a winner but to highlight systematic
ways in which various methodological choices impact the bias and mean squared error of the estimators.

6.1 Simulation parameters

We parameterize bidder one’s maximum competitor bid distribution as G.(b) < (/b + y — 0)~1/? for
b € [0,b] with b = 2/(1 +0+ \/m) and y, & > 0. Bidder one’s inverse bid function is then
p=1(b) = (1 + 0)b+ (y — 0)b%. Note that ! is strictly increasing on [0, b], which implies convexity of the
expected payment function e(p) = Ocp?+! / {1 +c(y — G)pg}, where c is a constant that depends on y and 6.

The maximum competitor bid distribution is chosen such that the support of bidder one’s valuations is
[0, 1] regardless of the values of y and 8. We can then fix bidder one’s valuation distribution and independently
vary the maximum competitor bid distribution to achieve various shapes of the inverse strategy function a and
competitor bid density, which are the respective targets of estimators based on our approach or estimators based
on the inverse bid function (IBF) like GPV. Figures 4 and 5 plot these functions. If y = 6 then the competitor
bid distribution is a power distribution and the inverse bid function is simply linear. As 6 approaches zero,
the competitor bid distribution approaches a truncated Fréchet distribution and the inverse bid function is a

convex quadratic.
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Figure 4: The inverse strategy function for various parameter values.

For every combination of y = 3/2,3/4, 1/3, 1/7and 0 =3/4,1/3,1/7,1/9, we draw independent and
identically distributed samples of 7" = 100, 250, and 500 maximum competitor bids. Thus, T represents the

number of auctions as well as the number of bids used to estimate bidder one’s expected payment function
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Figure 5: The competitor bid density for various parameter values.
and inverse strategy. We then independently sample 7" draws of bidder one’s valuations according to a power
distribution F, (v) = v3/2, compute her optimal bid, and apply our various methodologies to estimate several
objects of interest.

Similar to our approach to the analysis in the preceding sections, we remain agnostic about the underlying
data generating processes that might have produced the simulated sample of maximum competing bids by
directly parameterizing bidder one’s competitor(s)’s bid distribution(s). This choice serves two purposes. First,
we more directly control the shapes of the immediate targets of the nonparametric estimators than if we fixed
the number of bidders and varied their valuation distributions. Second, we do not confound the two distinct
ways of leveraging symmetry to improve the estimates: pooling bids to more precisely estimate a and using
the true distribution of win—probabilities that must prevail in any symmetric equilibrium of a high—bid auction.
We isolate the latter benefit by always using only one bid per auction to estimate a but report some simulation
results in which we substitute the true win—probability distribution when estimating the object of interest.**

We compare our estimators with an estimator based on an approach similar to GPV in which only the
independent sample of highest competitor bids are used to estimate the inverse bid function. Specifically,
we combine the empirical distribution and kernel density estimator to estimate the inverse bid function
b+ G,(b)/g.(b). This estimator is labeled “IBF” to indicate the estimates of the various objects were
constructed from a nonparametric estimate of the inverse bid function. The IBF estimator does not perform

any boundary correction or trimming, hence cannot be expected to perform well near the boundary. To be

“We verified that there exists at least one data generating process that could have produced the data. For example, the bids could
result from a two-bidder auction in which the other bidder’s valuation distribution is F, = G,(5,(v)), where ,(v) =3v/5ify =0
and f,(v) = {60(y — 0) = 5(0 + 1) + \/16(1 + )2 + 9[1 + 6 + 2(y — )2} /[16(y — 8)] if y # 8 is the other bidder’s optimal bid
function. If y = 6 = 1/(n— 1), the sample of highest competing bids also could have been generated by a symmetric n-bidder auction.
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clear, this is not a critique of GPV: the goal in their paper is to estimate the inverse bid function and valuation
density at an optimal rate in the interior of the support of the valuations. Here, we use the estimator for
the inverse bid function as an input into other objects of interest. A fairer comparison with our boundary—
corrected estimators can be found in “IBF-BC.” This estimator uses a boundary correction routine similar to
HH and is hence better suited for estimating objects that require integration over the entire support of the bids
or valuations.

All simulations employ an Epanechnikov kernel and a rule—of—thumb bandwidth sequence, multiplied by
an additional scaling factor of 1/5,1/2, 1, or 3/2 in order to explore sensitivity to the choice of bandwidth.
We use a Gaussian reference distribution for choosing bandwidths for methods that use nonparametric kernel
density estimators and a(p) = 0p” as our reference function for bandwidths using our procedure. Specifically,
we use the sample mean and variance of a;{G.r(b;)} to estimate the parameters ¢ and y in the parametric
reference model, then choose the bandwidth that would minimize the mean integrated squared error of the
estimator for « under the reference model. This optimal bandwidth also depends on y.*

We consider five different choices of y. The first is the identity transformation y;(p) = p and the second
is the infeasible zero—bias transformation y,(p) = a(p). The next transformation y;(p) = log(p) ensures that
the asymptotic bias is vanishingly small for p close to zero, though the asymptotic variance can be large. The
transformation y, = 4/p minimizes the MISE in « if « is a power function with exponent greater than 1/2.4¢
Finally, y5(p) = {/E balances the integrated asymptotic bias and variance of the estimator for « when « is a
power function, regardless of the exponent.

For y,, the rule of thumb suggests that an infinite bandwidth would minimize the integrated MSE because
the first—order bias is always zero. A better rule of thumb would suggest a bandwidth sequence on the order
of T~1/7  resulting in a faster rate of convergence than the other estimators. For the sake of comparison, we
do not take this route and instead use the same bandwidth as we do for y5. For the undersmoothed estimates,
we simply multiply the rule—of—thumb bandwidths by 7-2/15 so that the sequences are on the order of T-1/3.

For the boundary corrected estimates that use reflection—IBF-BC and &ﬁ—the auxiliary bandwidth
is proportional to the main bandwidth. In Pinkse and Schurter (2019), we show that choosing bandwidths

converging at a rate of T~1/7

would be optimal for both estimators if @ (equivalently g.) has three continuous
derivatives near the boundary. In this paper, we do not choose a bandwidth sequence to capitalize on this
extra smoothness because doing so would put the reflection methods at an advantage relative to the boundary
kernel estimators. Unlike the reflection methods, our boundary kernel method does not involve any auxiliary
input parameters that could be modified to take advantage of this extra smoothness. That said, we note that if

the researcher is willing to strengthen the smoothness assumption, the reflection method or a boundary kernel

4>For some choices of v, the squared error is not integrable on [0, 1]. In these cases, our rule of thumb minimizes the integrated
squared error on [0.05, 1].
“If a is a power function and the exponent is less than 1/2, the optimal y would be the infeasible choice v, .
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method that takes advantage of the extra smoothness could be more attractive in practice precisely for this
reason.*’
All simulations use a thousand replications.

6.2 Simulation results: ﬁ —consistent estimators

We first review the simulation results for the integrated objects MV and BS. Figure 6 illustrates the relative
root mean squared error (RMSE) of our unsmoothed and smoothed, boundary—kernel-based estimators along
with the IBF estimators. The bandwidths are chosen proportional to 7~!/3 so that the resulting ﬁ —consistent
estimator is asymptotically unbiased. For lack of a better rule, the constant of proportionality in the bandwidth
sequence is simply the rule—of—thumb constant multiplied by our additional scale factor. The various estimators
are arranged in columns, and each row represents a different combination of the target object, bandwidth
scaling factor, y, 8, and T'. The value in each cell is colored to reflect the value of the RMSE divided by the
minimum RMSE across the columns. The lightest green indicates the best performing estimator, while the
darkest purple indicates the RMSE was at least three times as large as that of the best performing estimator.
The color scale is top—coded because some estimators performed extremely poorly.

The unsmoothed MLE consistently performs well across a variety of parameter values, while the un-
smoothed isotonic regression estimator (L.S) has difficulty for some parameter values because it suffers from
finite—sample bias for values of p close to one. Intuitively, this bias arises from the fact that the GCM, by
definition, must lie below the estimate of the true expected payment function, which leads to an upward bias
in its slope near p = 1. This bias is more pronounced when y and 6 are both relatively large, because the true
expected payment is more convex near the right boundary. In contrast, the unsmoothed MLE is not as badly bi-
ased when y and 6 are large, because the graph of the MLE for e does not have to lie below the unconstrained
estimator. The finite sample bias in estimates of « for large values of p more negatively affects the relative
performance in estimating the bidder’s expected surplus because the values of a(p) for large p are weighted
relatively more in the integral formula for BS than for MV. We expect these differences in the unsmoothed
estimators to vanish as T increases because all our estimators in figure 6 are asymptotically equivalent.

When y is small, the undersmoothed, boundary—corrected IBF estimator for BS and MV appears to
under—perform in small samples, but otherwise has a relatively small RMSE. As expected, however, the
relative performance of the IBF approach is sensitive to the scale of the bandwidth sequence. We cannot
conclude from figure 6 that our approach is robust to the choice of bandwidth, however, because it does not
compare the relative performance of different bandwidth scaling factors. Table 1 makes this comparison in
the estimation of the bidder’s surplus using T' = 500 auctions. The results demonstrate that the asymptotic

behavior of our undersmoothed estimators is fairly similar across bandwidth sequences, whereas the IBF-BC

“TIn fact, if the target of the estimation were the valuation density, the researcher might assume three derivatives of g,, anyway, in
order to attain the typical T/ rate of convergence.
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Figure 6: Relative RMSE of ﬁ—consistent estimators, BS and MV. T is the most frequently repeating
parameter (in decreasing order) along the vertical axis. The first row reflects estimates of the mean valuation
when the rule-of-thumb bandwidths are scaled by 3/2, y = 3/2,0 = 3/4, and T = 500.
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Table 1: RMSE of estimators for the bidder’s expected surplus using ws(p) = p'/> and T = 500 auctions
relative to the minimum RMSE across all combinations of estimators and bandwidth scaling factors. Relative
values are multiplied by 1000.

Bandwidth (r,0)
scaling factor (1/7,1/9) (1/7,1/7) (1/7,1/3) (1/7,3/4) (1/3,1/9) (1/3,1/7) (1/3,1/3) (1/3,3/4)
IBF-BC 0.2 1671 3596 1741 1000 1153 1103 1848 1008
IBF-BC 0.5 1306 1510 1026 1037 1036 1041 1000 1067
IBF-BC 1 1244 1050 1041 1050 1025 1026 1008 1084
IBF-BC 1.5 1212 1000 1049 1059 1020 1020 1018 1093
LS 0 1465 1262 1000 1010 1104 1115 1326 1000
MLE 0 1148 1070 1059 1059 1041 1044 1094 1064
Sm. LS 0.2 1434 1201 1008 1014 1093 1103 1264 1007
Sm. LS 0.5 1399 1177 1016 1018 1085 1095 1208 1014
Sm. LS 1 1386 1128 1024 1024 1088 1097 1237 1019
Sm. LS 1.5 1369 1107 1029 1032 1088 1097 1229 1022
Sm. MLE 0.2 1053 1128 1078 1074 1008 1007 1044 1097
Sm. MLE 0.5 1022 1167 1086 1078 1000 1000 1035 1103
Sm. MLE 1 1014 1184 1093 1084 1005 1002 1074 1107
Sm. MLE 1.5 1000 1209 1097 1091 1005 1003 1071 1109
Min. value 5431073 2.1-1073 457-1072 9.25-1072 435-102 4-102 6.12-107° 7.44.1072
(3/4,1/9) (3/4,1/7) (3/4,1/3) (3/4,3/4) (3/2,1/9) (3/2,1/7) (3/2,1/3) (3/2,3/4)
IBF-BC 0.2 1075 1062 1083 1316 1074 1074 1080 1140
IBF-BC 0.5 1014 1016 1021 1056 1021 1021 1024 1045
IBF-BC 1 1003 1003 1004 1006 1005 1005 1005 1009
IBF-BC 1.5 1000 1000 1000 1000 1000 1000 1000 1000
LS 0 1075 1077 1104 1382 1086 1087 1094 1150
MLE 0 1042 1043 1059 1208 1063 1064 1069 1112
Sm. LS 0.2 1069 1070 1096 1327 1079 1080 1087 1140
Sm. LS 0.5 1064 1066 1091 1308 1077 1076 1084 1137
Sm. LS 1 1066 1067 1090 1299 1077 1076 1082 1131
Sm. LS 1.5 1067 1069 1092 1311 1077 1077 1083 1132
Sm. MLE 0.2 1012 1012 1017 1061 1028 1028 1031 1051
Sm. MLE 0.5 1009 1010 1014 1064 1026 1025 1029 1049
Sm. MLE 1 1012 1012 1015 1074 1028 1027 1029 1047
Sm. MLE 1.5 1014 1014 1017 1086 1029 1028 1031 1049
Min. value 1.07-107" 1.07-10"' 8.88-107% 1.45-1072 1.77-10"' 1.78-10"' 1.76-107! 1.28-10"!

estimator can be the best performing for some parameter values or worst performing estimator depending on
the choice of bandwidth. We consider this robust performance, and indeed not having to choose an input
parameter, a valuable characteristic of our approach.

The IBF-BC estimator for BS performs particularly well when y equals €, in which case the maximum
competitor bid is a power distribution and the inverse bid function is linear. Even without undersmoothing,
the asymptotic bias in the bidder’s expected surplus would be zero wheny =6 = lory = 6 = 1/2 and is
fairly small at intermediate values. This fact helps explain why the RMSE for BS using LS and MLE relative
to IBF-BC is larger, for example, in the (1/3, 1/3) column compared to the columns on either side.

Table 1 represents less than 6% of the information contained in figure 6. Many more tables (available

online here) provide further quantitative comparisons of the RMSE, as well as the bias of these and other
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estimators discussed below.

6.3 Simulation results: distribution and quantile functions

The next set of results compare the root mean integrated squared error (RMISE) of the value distribution
and quantile function. Based upon the results in the first two columns, the IBF approach without boundary
correction is (unsurprisingly) dominated by the boundary—corrected estimator. Next, comparing the second
column with the columns to the right, we find that our estimators are again more robust to the choice of
bandwidth and tend to outperform the boundary—corrected IBF approach when y and 8 are small, i.e. the
highest competing bid is stronger. Echoing our earlier observations, we again see that the smoothed MLE has
a smaller RMSE than the smoothed LS estimator when y and 6 are larger so that « exhibits less curvature at
the left boundary and is steeper at the right boundary.

Although all bandwidth sequences are proportional to 7-!/3 the finite—sample behavior of our smoothed
estimators is less (negatively) impacted by a small bandwidth. This finding is related to the fact that our
estimator for « is consistent even when the bandwidth tends to zero. Again, robustness is a virtue.

Comparing the rows for which either y or 8 is small, we also find that our transformation method signifi-
cantly reduces the RMISE in the estimate of the quantile function. In particular, the IBF-BC and the “no
transformation” (y) estimators have greater RMISE compared to the estimators that employ the transforma-
tions w3, yy, or ys. Looking across all columns, the smoothed least—squares estimator in conjunction with
the transformations ys; or w5 appears to consistently perform best or near the best when the highest competing
bid is relatively stronger (y and € are small), while the the IBF-BC estimator and the smoothed MLE estima-
tor with w5 or w3 perform better in terms of RMISE when the highest competing bid is relatively weak. We
note that in auctions with three or more bidders one would expect the highest competing bid to be relatively
strong and hence the smoothed least squares estimator to outperform the alternatives.

The differences between the estimators of the value distribution are less striking. This is due in part to the
fact that some of the differences in the estimates of the quantile function are driven by the behavior near the
left boundary. Using the delta method, one can show that the asymptotic distribution of the estimators for F,
are scaled by the value density at v. Under our simulation design, f, approaches zero for small v. The relative
differences in the estimators are dampened as a result. This also explains the fact that the log—transformation
w3 tends to be the best in terms of RMISE(F,) for small values of y and 6. Under these parameters, o'’
diverges as p approaches zero, which produces a large bias for small values of p absent a transformation. The
log—transformation ensures the asymptotic bias vanishes at the low end, while the fact that f,(v) is small
mitigates the detrimental effects on the asymptotic variance. The transformation w5 yields similar results,
though it does not reduce the bias and increase the variance by as much.

Zooming in on a subset of these simulation results in tables 2 and 3, we see that our estimator using the

w5 transformation does a good job of estimating the quantiles compared with the IBF-BC estimator. For rows
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Figure 7: Relative RMISE of estimators of value distribution and quantile function. T is the most frequently
repeating parameter (in decreasing order) along the vertical axis. The first row reflects estimates of the mean

valuation when the rule-of-thumb bandwidths are scaled by 3/2,y =3/2,0 = 3/4, and T = 500.
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using the rule—of—thumb bandwidths, i.e. when the bandwidth scaling factor is one, there are no columns in
which the IBF-BC estimator outperforms both the smoothed LS and smoothed ML estimators, and there are
several columns in which it does much worse. In contrast, the IBF-BC estimator for the value distribution
function is always nearly the best if not the best.

Table 2: RMISE of estimators for F, using y5(p) = p'/5 and T = 500 auctions relative to the minimum

RMISE across all combinations of estimators and bandwidth scaling factors. Relative values are multiplied
by 1000.

Bandwidth (7.0)
scaling factor” (1/7,1/9) (1/7,1/7) (1/7,1/3) (1/7,3/4) (1/3,1/9) (1/3,1/7) (1/3,1/3) (1/3.3/4)
IBF-BC 0.2 1211 1238 1360 1345 1214 1224 1298 1404
IBF-BC 0.5 1135 1153 1235 1268 1127 1136 1195 1303
IBF-BC 1 1072 1084 1098 1076 1025 1027 1061 1111
IBF-BC 1.5 1043 1050 1067 1083 1001 1000 1020 1044
Sm. LS 0.2 1094 1094 1036 1214 1085 1095 1183 1338
Sm. LS 0.5 1000 1000 1000 1000 1000 1000 1032 1120
Sm. LS 1 1051 1069 1260 1019 1081 1063 1036 1064
Sm. LS 1.5 1120 1145 1368 1202 1262 1225 1131 1111
Sm. MLE 0.2 1311 1345 1415 1264 1173 1185 1236 1325
Sm. MLE 0.5 1291 1319 1387 1148 1109 1114 1125 1141
Sm. MLE 1 1250 1282 1369 1168 1048 1049 1050 1044
Sm. MLE 1.5 1222 1256 1352 1242 1085 1060 1000 1000
Min. value 2.56-102 2.61-1072 2.61-102 2.55-1072 2.27-102 229102 23-1072 2.45-1072
(B/4.1/9) (3/4.1/7) (B/4.1/3) (374,374 (3/2.1/9) (3/2.1/7) (3/2.1/3) (3/2.3/%)
IBF-BC 0.2 1245 1248 1269 1297 1249 1252 1255 1253
IBF-BC 0.5 1183 1193 1206 1261 1236 1249 1261 1284
IBF-BC 1 1046 1047 1054 1076 1079 1086 1089 1105
IBF-BC 15 1000 1000 1000 1000 1000 1000 1000 1000
Sm. LS 0.2 1184 1189 1222 1289 1245 1250 1265 1295
Sm. LS 0.5 1101 1107 1108 1145 1183 1190 1201 1209
Sm. LS 1 1147 1143 1127 1123 1227 1232 1222 1212
Sm. LS 15 1284 1272 1217 1170 1341 1340 1300 1254
Sm. MLE 0.2 1163 1168 1197 1257 1201 1204 1220 1253
Sm. MLE 0.5 1057 1063 1056 1095 1093 1101 1113 1128
Sm. MLE 1 1045 1040 1019 1018 1105 1109 1094 1084
Sm. MLE 1.5 1171 1155 1080 1022 1272 1264 1203 1130
Min. value 2.51-102 2.53-1072 2.65-102 2.94-1072 3.12-102 3.12-102 3.24-1072 3.52-1072

6.4 Simulation results: density function

We now compare the various methods of estimation of the density of bidder one’s valuations. For the indirect
methods, a bandwidth proportional to T~!/3 is used in both the first and second steps. For the direct method,
o' is estimated using a bandwidth proportional to 7-!/7. We compare the direct method using an estimate of
f, as well as the true f,, which the econometrician would know under the assumption the data were generated
in a symmetric equilibrium. The boundary-corrected kernel density estimate f), is obtained from the sample of
p, = G.(b,,) using a bandwidth proportional to T~!/3. Note, however, that the true density f » is unbounded

near p = 0 in a symmetric equilibrium with more than two bidders, which may result in poor performance of
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Table 3: RMISE of estimators for Q, using ys(p) = p'/> and T = 500 auctions relative to the minimum
RMISE across all combinations of estimators and bandwidth scaling factors. Relative values are multiplied
by 1000.

Bandwidth (r,0)
scaling factor (1/7,1/9) (1/7,1/7) (1/7,1/3) (1/7,3/4) (1/3,1/9) (1/3,1/7) (1/3,1/3) (1/3,3/4)
IBF-BC 0.2 40155 219413 783522 123300 52007 56878 675179 1432
IBF-BC 0.5 85850 15733 61140 1227 3343 5603 2571 1288
IBF-BC 1 5930 166249 7220 1050 1233 8974 1036 1098
IBF-BC 1.5 12365 28752 1046 1064 1004 1001 1002 1032
Sm. LS 0.2 1078 1080 1015 1205 1112 1122 1205 1439
Sm. LS 0.5 1000 1000 1000 1000 1000 1000 1023 1179
Sm. LS 1 1047 1066 1253 1037 1067 1049 1010 1080
Sm. LS 1.5 1107 1133 1360 1273 1248 1214 1118 1128
Sm. MLE 0.2 1299 1335 1422 1290 1224 1238 1286 1396
Sm. MLE 0.5 1279 1307 1368 1176 1150 1157 1166 1192
Sm. MLE 1 1236 1269 1331 1158 1067 1073 1070 1059
Sm. MLE 1.5 1219 1258 1328 1223 1082 1065 1000 1000
Min. value 2.62-1072 2.69-107%2 2.77-1072 2.53-1072 2.26-1072 2.29-107% 2.32-1072 2.36-107
(3/4,1/9) 3/4,1/7) (3/4,1/3) (3/4,3/4) (3/2,1/9) (3/2,1/7) (3/2,1/3) (3/2,3/4)
IBF-BC 0.2 2309 19684 10833 1448 26947 1502 1511 1545
IBF-BC 0.5 1205 1216 1233 1295 1293 1299 1314 1330
IBF-BC 1 1058 1059 1068 1091 1104 1109 1113 1126
IBF-BC 1.5 1000 1000 1000 1000 1000 1000 1000 1000
Sm. LS 0.2 1371 1382 1450 1586 1598 1627 1670 1750
Sm. LS 0.5 1148 1161 1192 1301 1305 1307 1351 1413
Sm. LS 1 1116 1115 1115 1150 1189 1195 1200 1223
Sm. LS 1.5 1247 1236 1190 1157 1286 1283 1247 1204
Sm. MLE 0.2 1285 1294 1342 1431 1388 1409 1441 1496
Sm. MLE 0.5 1101 1111 1120 1192 1151 1153 1184 1225
Sm. MLE 1 1038 1035 1021 1028 1062 1064 1057 1061
Sm. MLE 1.5 1141 1127 1059 1000 1207 1198 1141 1067
Min. value 2.39-1072 2.41-1072 2.51-1072 2.78-1072 2.95-1072 2.96-107% 3.08-10"2 3.38-1072

the density estimate for small values of p > 0. Thus, even though the pointwise rate of convergence of our
estimate of f » is faster than the rate of convergence of our estimate of a’, we would expect this estimator to
perform poorly in finite samples. Indeed, the simulation results indicate that the direct method combined with
the true f), compares favorably with the indirect estimates, but the direct method combined with an estimate
of f, can be relatively poor. In such cases, better results might be achieved by estimating the density of an
appropriate transformation of p and using a change of variable formula to recover an estimate of f,.

6.5 Simulation results: boundary correction methods

Figure 9 illustrates the simulation results for estimates of the inverse strategy function at the right boundary.
The reflection—based boundary correction methods tend to perform better when the target of smoothing—a«
or g.—is relatively flat and linear near the boundary. In this case, we would expect the error in the estimate
of the auxiliary parameter d to be relatively small. On the other hand, the boundary kernel method tends to

perform better when «’ is large near the boundary, which would be more likely to happen if the number of

42



-
g
hd—'
[+
Fo
° . ||I ||.|||||H |IH|||
L
|
=
=
@O
8 -
i
o 5
| JW
-
[i4]
T =
I—E o
= @0
o o
=)
od
@0
—
]
! -
£z
o
2 S8
© ®.E
! °
5 oS
7] m E
g p=
= x £
£
-
-
Ll
o0
Ll
A

B
34
1434
1T
1/9

| "
I %
[ b g
Tlmmee
s 8
£3
9y -yeg-seg-veg e
@ @
@ 3
E — — —
D « o = N
‘B o o o o
o o e o
o - e [ e

Figure 8: Relative MSE of estimators of value dengify. T is the most frequently repeating parameter (in
decreasing order) along the vertical axis. The first row reflects estimates of the mean valuation when the
rule-of-thumb bandwidths are scaled by 3/2,y =3/2,0 =3/4, and T = 500.



bidders is small.

6.6 Simulation results: symmetric auctions

Finally, we simulate 250 symmetric two—bidder auctions in which the bidders’ valuations are independently
drawn from a mixture of independent beta distributions and estimate the bidders’ expected surplus and
mean valuation using the pooled sample of bids. In table 4, we isolate and quantify the additional benefit of
exploiting symmetry by substituting the known win—probability distribution as in section sections 5.3 and 5.4
compared with the indirect method, which computes the mean valuation and expected surplus from averages
of the pseudo sample of values. For the bidder’s surplus the indirect estimator had a standard deviation that
was between 1.32 and 4.29 times as large as the standard deviation of the estimator in section 5.3. For the
mean valuation, the relative standard deviation of the estimators ranged from 1.01 to 1.75.

Table 4: The standard deviations of the indirect estimators for the bidder’s surplus and mean valuation relative
to the estimators in section 5.3 and section 5.4. The bidder’s valuations are distributed as 0.1B(6,, 6,) +

0.9B(05,0,), where B(8,,0;) are independent Beta—distributed random variables with shape parameters 6,
and 0.
J

(6,6,,6,0,)
14,11, 2,1,1,2) d,1,2,2) d,1,2,3) (1,1,1,3) (2,1,1,3)
BS 3.03 3.63 1.42 1.32 4.16 4.29
MV 1.07 1.28 1.01 1.02 1.75 1.68

7 Conclusion

This paper reformulates the empirical analysis of auction models as an isotonic estimation problem by treating
the probability of winning as the choice variable in the bidders’ decision problem. The nonparametric least—
squares and nonparametric maximum likelihood estimators for a bidder’s inverse strategy function are shown
to converge at the optimal nonparametric rate. As a complementary set of results, we prove the asymptotic
behavior of two boundary correction methods that can be combined with transformation to better control the
bias—variance tradeoff in the kernel smoothed versions of our estimators. While these smoothing methods are
important when estimating some objects of potential interest to the researcher, smoothing is not necessary for
others. We prove that using our unsmoothed estimator as an input to a simple plug—in estimator of parameters
such as the bidder’s expected surplus achieves the semiparametric efficiency bound.

Because auction models can be identified when bidders are asymmetric and when only a subset of the
bids is observed (Athey and Haile, 2002; Campo et al., 2003), we provide separate results depending on
assumptions made about the bids observed by the econometrician. The reason for this flexibility is that,
in a first—price auction, bidder one’s equilibrium expenditure function e only depends on the distribution
of the maximum competitor bid. We therefore assume that the data are sufficient to obtain an estimate

of this distribution and use this (unconstrained) estimator as the starting point for our analysis. If bidders
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Figure 9: Relative RMSE of the estimator for the maximum valuation using boundary kernel and generalized
reflection methods.
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are symmetric and their bids are independent, such an estimator could be G;‘l, where G is the empirical
distribution of the bids. If bidders are asymmetric then the product of the competitors’ marginal empirical
bid distributions would be a natural choice. If there is possible dependence among the competitors’ bids,
either arising from dependence in the competitor’s valuations or coordination in their bids, then the empirical
distribution of the maximum of the competitors’ bids can be used. We show how the asymptotic properties of
our constrained estimators of e and & improve as we add independence and symmetry assumptions: such
improvements can be substantial and depend on the object being estimated.

When bidders are symmetric, the benefits of pooling bids in order to estimate e and « using more data are
conceptually clear and obvious. Another benefit is that the symmetric monotone equilibrium of a high—bid
auction implies the distribution of optimally chosen win—probabilities is a known function of the number of
bidders. We show that using the true distribution in combination with estimates of e and a can significantly
reduce the variance of estimated objects compared to two—step methods, which use the empirical distribution
of win—probabilities.

Our paper addresses many issues and is fairly exhaustive in several dimensions. Nevertheless, there are
several issues that we do not address in the paper. First, we ignore the potential presence of a (binding) reserve
price. A binding reserve price would affect identification of certain objects,*® but for many other objects,
allowing for a reserve price would pose a minor, not especially interesting (from an econometric perspective),
nuisance. Further, we do not allow for endogenous entry. Although endogenous entry can be an important
concern in empirical work and raises interesting modeling and identification questions (Levin and Smith,
1994; Li and Zheng, 2009; Marmer et al., 2013; Gentry and Li, 2014), there are many ways of modeling this
and it would be beyond the scope of this paper. The same comment applies to possible risk aversion, albeit
that risk aversion would likely pose a tougher problem because nonparametric identification of the bidders’
utility functions requires an exclusion restriction (Guerre et al., 2009). Relaxing the independence assumption
to allow for affiliation among the bidders’ valuations would similarly require an extension that combines the
insight of Campo et al. (2003) with our approach to estimate bidder 1’s expected payment conditional on its

private valuation.

References

Aryal, G., Grundl, S., Kim, D. H., and Zhu, Y. (2018). Empirical relevance of ambiguity in first-price auctions.
Journal of Econometrics, 204(2):189-206.

Athey, S. and Haile, P. A. (2002). Identification of Standard Auction Models. Econometrica, 70(6):2107-2140.

Bierens, H. J. and Song, H. (2012). Semi-nonparametric estimation of independently and identically repeated

first-price auctions via an integrated simulated moments method. Journal of Econometrics, 168(1):108-119.

“8For instance, the value distribution below the reserve price.

46



Brunk, H. D. (1955). Maximum likelihood estimates of monotone parameters. The Annals of Mathematical
Statistics, pages 607-616.

Campo, S., Guerre, E., Perrigne, 1., and Vuong, Q. (2011). Semiparametric Estimation of First-Price Auctions
with Risk-Averse Bidders. The Review of Economic Studies, 78(1):112—-147.

Campo, S., Perrigne, 1., and Vuong, Q. (2003). Asymmetry in first-price auctions with affiliated private
values. Journal of Applied Econometrics, 18(2):179-207.

Carolan, C. and Dykstra, R. (2001). Marginal densities of the least concave majorant of brownian motion.
Annals of Statistics, 29(6):1732-1750.

Gentry, M. and Li, T. (2014). Identification in Auctions With Selective Entry. Econometrica, 82(1):315-344.

Gimenes, N. and Guerre, E. (2019). Quantile regression methods for first—price auctions. Technical report,
University of Kent.

Grenander, U. (1956a). On the theory of mortality measurement. Scandinavian Actuarial Journal, pages
70-96.

Grenander, U. (1956b). On the theory of mortality measurement: Part ii. Scandinavian Actuarial Journal,
pages 125-153.

Grundl, S. and Zhu, Y. (2019). Identification and estimation of risk aversion in first-price auctions with
unobserved auction heterogeneity. Journal of Econometrics, 210(2):363-378.

Guerre, E., Perrigne, 1., and Vuong, Q. (2000). Optimal Nonparametric Estimation of First-Price Auctions.
Econometrica, 68(3):525-574.

Guerre, E., Perrigne, 1., and Vuong, Q. (2009). Nonparametric Identification of Risk Aversion in First-Price
Auctions Under Exclusion Restrictions. Econometrica, 77(4):1193-1227.

Haile, P. A., Hong, H., and Shum, M. (2003). Nonparametric Tests for Common Values in First-price
Sealed-bid Auctions.

Hanson, M. A. (1981). On Sufficiency of the Kuhn-Tucker Conditions. Journal of Mathematical Analysis
and Applications, 80:545-550.

Hanson, M. A. (1999). Invexity and the Kuhn-Tucker Theorem. Journal of Mathematical Analysis and
Applications, 236:594-604.

Henderson, D. J., List, J. A., Millimet, D. L., Parmeter, C. F., and Price, M. K. (2012). Empirical implementa-
tion of nonparametric first—price auction models. Journal of Econometrics, 168(1):17 — 28.

Hickman, B. R. and Hubbard, T. P. (2015). Replacing sample trimming with boundary correction in
nonparametric estimation of first-price auctions. Journal of Applied Econometrics, 30(5):739-762.

Jun, S.J. and Pinkse, J. (2019). An information—theoretic approach to partially identified auction models.

Jun, S.J., Pinkse, J., and Wan, Y. (2015). Classical Laplace estimation for {/Z—consistent estimators: Improved

convergence rates and rate-adaptive inference. Journal of econometrics, 187(1):201-216.

47



Karunamuni, R. J. and Alberts, T. (2005). On boundary correction in kernel density estimation. Statistical
Methodology, 2(3):191-212.

Karunamuni, R. J. and Zhang, S. (2008). Some improvements on a boundary corrected kernel density
estimator. Statistics & Probability Letters, 78(5):499-507.

Kiefer, J. and Wolfowitz, J. (1976). Asymptotically minimax estimation of concave and convex distribution
functions. In Zeitschrift fiir Wahrscheinlichkeitstheorie under verwandte Gebiete, volume 34, pages 75-85.
Spring.

Kim, D.-H. (2015). Flexible Bayesian analysis of first price auctions using a simulated likelihood. Quantitative
Economics, 6(2):429-461.

Kim, J. and Pollard, D. (1990). Cube root asymptotics. Annals of Statistics, 18(1):191-219.

Krasnokutskaya, E. (2011). Identification and Estimation of Auction Models with Unobserved Heterogeneity.
The Review of Economic Studies, 78(1):293-327.

Larsen, B. and Zhang, A. L. (2018). A mechanism design approach to identification and estimation.

Lebrun, B. (2006). Uniqueness of the equilibrium in first-price auctions. Games and Economic Behavior,
55(1):131-151.

Levin, D. and Smith, J. L. (1994). Equilibrium in Auctions with Entry. American Economic Review,
84(3):585-599.

Li, T. (2005). Econometrics of first-price auctions with entry and binding reservation prices. Journal of
Econometrics, 126(1):173-200.

Li, T., Perrigne, 1., and Vuong, Q. (2002). Structural Estimation of the Affiliated Private Value Auction
Model. The RAND Journal of Economics, 33(2):171-193.

Li, T. and Zheng, X. (2009). Entry and Competition Effects in First-Price Auctions: Theory and Evidence
from Procurement Auctions. Review of Economic Studies, 76(4):1397-14209.

Luo, Y. and Wan, Y. (2018). Integrated—quantile—based estimation for first—price auction models. Journal of
Business & Economic Statistics, 36(1):173-180.

Ma, J., Marmer, V., and Shneyerov, A. (2019a). Inference for first—price auctions with guerre, perrigne, and
vuongs estimator. Journal of Econometrics, 211:507-538.

Ma, J., Marmer, V., Shneyerov, A., and Xu, P. (2019b). Monotonicity—constrained nonparametric estimation
and inference for first—price auctions. Technical report.

Marmer, V. and Shneyerov, A. (2012). Quantile-based nonparametric inference for first-price auctions.
Journal of Econometrics, 167(2):345-357.

Marmer, V., Shneyerov, A., and Xu, P. (2013). What model for entry in first-price auctions? A nonparametric
approach. Journal of Econometrics, 176(1):46-58.

Maskin, E. and Riley, J. (2000). Equilibrium in sealed high bid auctions. Review of Economic Studies,

48



67(3):439-454.

Milgrom, P. R. and Weber, R. J. (1982). A theory of auctions and competitive bidding. Econometrica,
50(5):1089-1122.

Myerson, R. B. (1981). Optimal auction design. Mathematics of operations research, 6(1):58-73.

Nagaraja, H. N. (1982). Record values and extreme value distributions. Journal of Applied Probability,
19(1):233-239.

Newey, W. K. (1990). Semiparametric efficiency bounds. Journal of applied econometrics, 5(2):99-135.

Pal, J. K. and Woodroofe, M. (2006). On the distance between cumulative sum diagram and its greatest
convex minorant for unequally spaced design points. Scandinavian journal of statistics, 33(2):279-291.

Pinkse, J. and Schurter, K. (2019). Improved bandwidth selection for boundary correction using the generalized
reflection method. Penn State working paper.

Powell, J. L., Stock, J. H., and Stoker, T. M. (1989). Semiparametric estimation of index coefficients.
Econometrica, pages 1403-1430.

Roberts, J. W. (2013). Unobserved heterogeneity and reserve prices in auctions. RAND Journal of Economics,
44(4):712-732.

Robinson, P. M. (1988). Root-n-consistent semiparametric regression. Econometrica, pages 931-954.

Tripathi, G. (2000). Local semiparametric efficiency bounds under shape restrictions. Econometric Theory,
16(5):729-739.

van der Vaart, A. W. (2000). Asymptotic statistics, volume 3. Cambridge university press.

A Proofs of results in the main text

The proofs are ordered in the same way as the technical results in the main text. Additional results can be
found in appendix B.

A.1 Least squares estimator

Proof of theorem 1. We first establish the results for é, then sketch the derivation of the limiting distribution
of \3/? {ap(p) — a(p)}. Convexity of é; follows by construction since a is restricted to be monotonic.
Trivially extending the arguments in (van der Vaart, 2000, lemma 21.4 and the dicussion at the top of
p308) about the empirical quantile process to ér, ﬁ {er(-)—e(-)} has the asserted limit process on (0, 1). We
now extend this to [0, 1]. Note that e;-(0) — e(0) = 0 and ﬁ {er(1)—e(l)} = 0,(1), so we have convergence
of finite marginals and tightness on (0, 1). We thus only need to extend tightness to [0, 1].
We show the argument at one, where the argument at zero follows analogously. Let p =1 —1/T and

Ar(p) = ﬁ {er(p) — e(p)}. Then for any sequence 6; = o(1) by the triangle inequality,

sup [Ar(D =A@ < sup |Ar(pr) = Ar(p)| + | Ar(or) — A7 (D). (34)
1>p>1-61 1>p>1-61
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The first right hand side term in (34) is op(l) by tightness on (0, 1). The second right hand side term in (34) is
0,(1) since the second highest order statistic converges at rate T'.

By Carolan and Dykstra (2001), the limit process is identical for the greatest convex minorant provided
that e is strictly convex, which is implied by assumption B since a = ¢’ is the inverse bid function composed
with Q...

We provide a sketch of the proof and a derivation of the limit distribution for a(p). A full proof would
be more careful, especially about issues pertaining to tightness. However, there is nothing special about the
present scenario and a full rigorous proof would be lengthy but routine.

Our justification follows two steps. In the first step, we derive a limit result for the inverse problem, i.e.
the estimation of @~!. In the second step we then apply equations (15) and (16) of Jun et al. (2015) to obtain
the limit distribution of ay itself.

We first establish asymptotics for the ‘inverse isotonic regression’—type estimator and then take its inverse
to obtain asymptotics for a. Note that for § = a(p), argmin;{e(p) — £p} = a~ (&) = p. Let p be its sample

equivalent, such that
VT (b - p) = VT {argmin{&7(5) — &5} — p} = VT {argmin{er(5) — &r(p) — G — )} — p} =
p p
VT { argmin((67(5) = &(p) = e(B) + e®)) + (e(B) — e(p) = &G =)} ) = p | =
p
VT {aremin((6(9) = &) = e(p) + e} + (DG~ p*/2) = p | =
b

argmin<T2/3{éT (p + t/{/;
t

S~

—&r(p)—e(p+1/VT) +e(p)) + a’(p)t2/2>

1=

argmin(G°(1) + o/ (p)r*/2) ~ argmax(G°(r) — &' (p)r*/2).
t t
where G° is a Gaussian process with covariance kernel*’

lim T{H (p+1/VT,p+s/VT) = H(p+1/VT.p) = H(p.p+5/VT) + Hp. )}

Applying the same idea as in equations (15) and (16) in Jun et al. (2015), we write

0= VT {ar() — a(p)} = VT {ar(p) — a(p) + a(p) — a(p)}
= VT {ar ()~ a(p)) + ' (pargmax(6°() = o' (p)*/2).

The result then follows from local tightness of @ — a in 1/ \3/? —neighborhoods. 0

“9This fact can be most easily seen by thinking in terms of a Bahadur representation.
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Justification of (11). Under (7), the covariance kernel for G° simplifies to § 2(p)|Med(s, ,0)| : in other words,

G° is then ¢(p) times a standard two—sided Brownian motion G2, such that then by a change of variables,
argmax (G°(1) — ' (p)i2/2) ~ {2¢(p)/o’ (P} argmax(GE(r) — 12)
t t
From equations (15) and (16) in Jun et al. (2015) it then follows that

VTiar) - ap)} > Va2 (p)al (p) arg max (%) ~ ).

A.2 NPMLE

Definition 1 (Invex function). A function f : § C R” - R isinvex at u € § if there exists a R"-valued
function # such that f(x) — f(u) > n(x) - Vf(u) for all x € S, where V f denotes the gradient vector of f.
Such a function # is known as an invexity kernel.

A function g : S C R" — Riis type I invex at u € S if there exists a R”-valued function # such that
—g(w) >n(x)-Vg(u) forall x € S.

Theorem 12 (Hanson (1999) theorem 2.1). Consider the problem min g f(x) subject to g(x) < 0 for some
functions f : R" - Rand g : R" — R"™ that are differentiable on S. For u € S to be optimal, it is
sufficient that the KKT conditions are satisfied at u and f and g satisfy f(x) — f(u) > n(x) - Vf(u) and

—g,(u) > n(x)- Vg, (u) for every active component g, of g for some common invexity kerneln : R" - R". [
Proof. See Hanson (1999), theorem 2.1. ] ]

Lemma 5. The KKT conditions (58) are necessary and sufficient for the isotonic maximum likelihood problem

(13).

Proof. The proof proceeds as follows. First, we establish that —% and the isotonicity constraints are invex
functions, a generalization of convex functions (see definition 1) which may be equivalently characterized
as the collection of differentiable functions for which every stationary point is a global minimum. Second,
we show that these functions are invex with respect to the same invexity kernel using Gale’s theorem of the
alternative, a method of proof suggested by Hanson (1981). Finally, we conclude that the KKT conditions for
the constrained minimization of —% are sufficient by a direct application of theorem 2.1 of Hanson (1999).

First, —& is invex because every stationary point is a global minimum. To see this, we note that —< is

convex at its (unique) stationary point because

0L t=2 t—1 t—1 r—1

2 = 7 ) = - ) >
dal,  (ay = b)) (@ =be—1)? (@ = b))y —by)  (ag = by-1)

0,
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where the second equality follows by substitution using the first-order condition, and the inequality follows
from by, > b(,_yy. Thus, there is a unique local minimum. Finally, there are no minima at the boundaries
because —a%gf is eventually positive as a, tends to infinity and —% diverges to infinity as &, approaches
b, Thus, every stationary point is a global minimum. Hence, —% is invex. Then, by definition of invexity,
there exists a vector-valued invexity kernel # such that L(&?’ILE) — L(a) > n(a) - VL(a) for all @& The
constraints on &, are linear and therefore invex, as well.

Second, we must further show that there exists a common invexity kernel with respect to which - &
and the (active) constraint functions ¢,(&) = —a(, + @,_;, are (type I) invex at the solution. The existence
of such an invexity kernel is implied by the existence of a solution to the linear system Axn(@) < C(&) for
all & where A is the RT=2 x RT~? Jacobian matrix (-V.Z; Vey; ... 5 Ver) evaluated at o“t%’”‘E and C(a) =
(ZL(@"F) = L(@), —¢4(@), ..., —cp(@)). By Gale’s theorem of the alternative, a solution to this system of
inequalities exists if and only if there does not exist a vector y > 0 such that yy A = 0 and C(@)'y = —1.

Because A is of the form

_a&MLEg _adMLEg _a&MLE g _a&MLEg
® @ ® ©

1 -1 0 0
0 1 -1 0
0 0 1 -1

-1 _

and because the stationarity condition implies 4, = } _;

a&é\;l)LEg , we can show that y’ A = 0 has a solution
only if y is a scalar multiple of (1, 44, ..., A7). But then C(@)'y = —1 does not have a solution for any &
because y and C(@) are nonnegative vectors for all @. Thus, the objective and active constraints are (type I)
invex with respect to some shared invexity kernel.

Finally, any solution to the KKT conditions is a global minimum by theorem 12. O O

Lemma 6. The derivative ofgj(a) = t’il__] {(s —2)log(a — b(;)) — (s — 1) log(a — b(s_l))} with respect to

s—tj

a is zero exactly once on (b, _, 00) and crosses zero from above.
J

Proof. Multiplying the stationarity condition & I’ (@)=0by a — b(¢,~+1—1) and collecting terms, we find that «

is a stationary point if and only if

122 &= bg,,,-1)
;= Dy (@) +2 Z yo(@) =ty =3, where y(a) = a — by
§=1; ’

For all s, ys(b(,j_ﬂ_ 1)) = 0 and y(a) is continuous and increasing in a. The left side of the equation is equal to

zero at b(tj+1_1) and approaches 7, — 1 +2(¢,,, —1—1t;) = 2t;,, —1; =3 > 1;,; — 3 as a increases. There exists
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an « that solves the equation above by the intermediate value theorem, and the solution is unique because the
left side is strictly monotonic in a.

Finally, &/ crosses zero from above because &/ diverges to positive infinity as a approaches b, _;.

J J #5411

U U

Lemma 7. If &((tk;l) and &Etk_l)) are the values of & in the two blocks that are pooled together in the k-th step,
J Jj+1
~(k=1)

o ~(k=1)
then the new value is &, ) between @ ) and a o)

(k—1) ~(k—=1) ' ’
(ta) < a e The zero of Ej + gj + must be greater than
(k=1)

&%) because both £’ and &’ _, are positive to the left of &
(tj+1) J ]+1 (tj+1)
(k=1)

zero of &£’ + %’  must be less than &
J Jj+1 )

lemma 6. O] O]

Proof. Without loss of generality, assume &
by lemma 6. On the other hand, the

because both derivatives are negative to the right of &((f)_l) by
j

Lemma 8. PAVA for the NPMLE is a dual active set method, i.e. PAVA satisfies stationarity, complementary
slackness, and dual feasibility at every step of the algorithm, but does not satisfy primal feasibility until the

final iterate.

Proof. The PAVA algorithm clearly satisfies the stationarity and complementary slackness conditions at
every step, and satisfies primal feasibility at the last step (primal feasibility is the stopping criterion). It
remains to show that the Lagrange multipliers are nonnegative at every step.

Let

-1 -1

(k) ~ s—2 s—1

A= 2,00, 2@ = Z<~(k> T >
s=3

s=3 N = b “éf)) = by
denote the Lagrange multipliers implied by the stationarity conditions, where the superscripts (k) indicate the
value of the variable after the k-th step of the algorithm. Initially, 150) = 0 for all ¢.

We will proceed by induction on k. Let ¢; and 7, be the starting points of the adjacent blocks pooled
together in the k-th step for some k > 0. Assume ij ) > 0 for all  and Jj<k.

Suppose by way of contradiction that a negative Lagrange multiplier is introduced in the k-th step. The
negative multiplier must apply to one of the active constraints in the two most recently merged blocks of
constraints, because the Lagrange multipliers on constraints outside these two blocks are unaffected: the
multipliers are all zero for the slack constraints on the singleton blocks to the right, and clearly ;lﬁk) is unaffected
forallt <t ;-

A negative multiplier on one of the constraints in the most recently merged blocks implies that there exists
a constraint within this chain of equalities that can be slackened and increase the loglikelihood. We will show
that this leads to a contradiction because slackening any one of the constraints and moving in the direction
that would increase the loglikelihood will necessarily violate primal feasibility.

Suppose we slacken the constraint &, > &_;). There are two cases to consider. First, suppose the
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slackened constraint belongs to the left pre-merged block, i.e. s is such that#; < s <17,,,, and let &Et(k)) denote
j

the new solution to the stationarity condition in the sub-block to the left of s. Let &%=V denote the solution for

(s)
a in the block beginning with s and ending 7;,; — 1. Then &gt(k)) must be greater than the value of &EEI;_
j

right sub-block, otherwise relaxing this constraint would have been feasible and improved the loglikelihood in

D'in the

an earlier iterate, thereby contradicting our assumption that the k-th step is the first that introduces a negative
Lagrange multiplier. In addition, g® > kb 5 g/*=b
1) @) (s)

zt(k) ) is less than &('t(k)). Hence, none of the constraints in the left block can be
J+l j

removed while maintaining primal feasibility.

by lemma 7. Finally, we invoke lemma 7 again

to conclude that the value of &

On the other hand, we may suppose the objective would by improved by making one of the constraints
in the right block slack. By a similar argument, this too would violate primal feasibility. Therefore, none
of the constraints in the merged block can be removed without violating primal feasibility or decreasing the
objective. Therefore, none of the Lagrange multipliers are negative after the k-th iterate. By induction, there

are no negative Lagrange multipliers in any step of the algorithm. O O

Proof of theorem 2. The final iterate of the PAVA algorithm satisfies the KKT conditions by lemma 8, which

are sufficient for the global maximum by lemma 5. O

Justification of (14). We provide a sketch of the proof and a derivation of the limit distribution. A full proof
would be more careful, especially about issues pertaining to uniformity. However, there is nothing special
about the present scenario and a full rigorous proof would be lengthy but routine.

We remind the reader that a?le(p) = a;“c{Gc(b)} can be characterized in terms of the inverse of the

solution to an ‘inverse regression’ problem, namely to find the solution f;(v) that minimizes

T
ST(b,U)=lZ< t=2 -1 >1](b(,)§b),

T 5 \v=byy v=byy

over a region of b’s for which v — b is bounded away from zero. Note that f; is an estimate of the bid function
P(v). We first obtain the limit distribution of {/? {pr(v) = p(v)}. We then invoke the results of Jun et al.
(2015) to obtain properties of the inverse.

We first obtain an approximation of the form S (b, v) ~ S; (b, )+ S;(b) +S(b, v), for functions S, S;, S
introduced below, where ~ means that the omitted terms are negligible. Taking {/? —consistency as given,
we then argue that T%/3 [ST{ p)+x/ {/f , 0} = S {p(v), u}] converges to a limiting Gaussian process plus
a quadratic in x, whose minimizer as a function of x has a (scaled) Chernoff distribution. Applying equations
(15) and (16) in Jun et al. (2015) then yield the stated limit distribution.

Noting that max,|b,, — Q.| = Op(T‘l/z) for Q,, = Q.(t/T), we have (uniformly in b, v),
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T

1 t—2 t—1
Sr(b,v) = = ( - )ﬂ(bm <b)=
T z=22 U—b(,) U—b(,_l)
I lw 2
— ———1(byy < b < byyy) — = 1(byy < b)
T;U_b(t) ! + T;U_b(t)
w1 v 2
== Z; oo G0 b <bun) -7 g; o 10 b
T n
by — T p —
t P 2 (®) -1
LW Zd gy b<b 2D Zd g <b)+0 (T™).
ST (0— b)) (b < @+1) = Z(U—b 7 (byy <b)+0,(T™)
m v
Now, term I is
T
G.r(b G.r(b)—G.(b G.(b
“v- Qc, T v—0.{Gp(b)} v—>b -b
where ~ means that asymptotically negligible terms were omitted. Further, term II is
~ /GCT(b) — 2 4= 2/b 8D g 4 Gr® = Ge®)
0 v—0.(p) o v—>b v—>b
G,.(b b G, . _G.(b)—G(b
2 c()_z/ c(~) db+2 cT() c() (36)
v—> o (v—>b)? v—>
Term III is
T
bay = Qe O.{G.(b)} —b G.r(b) — G.(b)
[AR0) cT c cT c
Y —————— 10, £b<0,,, 1) ~G.(b) - (37)
Z; Tw-0,)° et (v—b)? (v —b)
Finally, term IV is
T G, (b) b i A
L2 <7 Q.r(p)—0.(p) G.r(b)—G.(b) -
=) )by = Q) HQ,, < b) = / =L = dp~ -2 / L=< db. (38)
o7 p 0 {fv-0.p} 0 (v—b)

Adding the right hand sides in (35) and (37) and subtracting the right hand sides in (36) and (38) from the

sum yields after integration by parts on one of the nonstochastic terms

G.-(b)—G.(b bG -G b G (s)- -
§T(b, U) ~ cT( ) c( ) + 2/ cT(s) c(S) ds +/ c(S) gc(s)z(u S) dS ) (39)
v—>b 0 (v —s)? 0 (v—15)
Sr(b.0) 536, S.0)
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Now, by assumption C,

‘o KO G*(b)
\/?(ST+§T)M2/O et

J/

v

SR S5

as a process indexed by (b, v). Thus,

T3 [SR{B() +1/VT. v} — SR{(v). v}] = 0,(D),
T2 {SR(p(v) + 1/ VT, v) — SK{B©), v} } » Ve B) v - p(v)} 'GP,

where G2 is a standard two—sided Brownian motion.
Further, T2/3 {S(b + t/\}/i v) — S(b, U)} = S/ (b, U)t2/2 + o(1), where the derivatives are taken with
respect to b. Putting everything together suggests that under (7) for b = f(v),

\ . /gc(b) B Sll(b) X\ 4gc(b) 1/3
\/?{ﬂT(U)—ﬂ(U)} > arg;mn<ﬁ6 (x) + ) X > - <(U—b)2{§”(b)}2> C,

where C is a standard Chernoff. Note that when S” is evaluated at f(v), we get S”(b) = {2g3(b) -
gé(b)Gc(b)}gc(b)/GZ(b). By equations (15) and (16) of Jun et al. (2015) we have that for b = Q.(p),

Gc(b)gg(b)> < 4g.(b) )1/ 3
G: =
g2(b) (a(p) — b)*{S"(b)}?
{ 4G*(b) < 5 G.(b)g(b)
g2(b) g2(b)

VT (@™ (p) - a(p)) > (2 -

1/3
) } C= {/452(12){2Q;(p) +0/(p)p}C,

as claimed. O

A.3 Smoothing

o]

Proof of theorem 3. First convexity. Substitution of t = (s — p)/h yields é,(p) = /_m ér(p + sh)k(s) ds.

Thus, forany 0 < 4 < 1 and any p, < p,
er{Ap, +(1 = Dp,} = / ér{Ap, + (1 = Dp, + shk(s)ds <

/ {28 (py + sh) + (1 — Dép(py, + sh) }k(s) ds = Aép(p,) + (1 — Dér(py).

Now convergence. We have

[o0]

VT{er(p)—em} = VT < / : ook (,)_;q) ds“"””) ) ﬁ(/_w

ér(p+sh)k(s)ds — e(p)> =
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VT / (67(p + 5h) — &1(p) — e(p + sh) + e(p) }k(s) ds

. J/

v

I
+ VT {&r(p) - e(p)} + VT / {e(p + sh) — e(p) }k(s) ds

II v
III

Term II is what we want left over. Term III is o(1) by a standard kernel bias expansion and assumption D.
Finally, term I is 0,(1) by theorem 1.

We end by establishing convergence of &,. Note that

[o0]

VTh{ar(p)-a(p)} = —\/ﬁ(% / éﬂs)k’(%)dsw(p)) = —Vﬁ(% / éT<p+sh>k'<s)ds+a<p)> =

(]

_\/% / {er(p + sh) = &1(p) = e(p + sh) + e(p) }K'(5) ds

hd

I
_\/%{éT(p) —e(p)} / K'(s) ds —\/% / e(p + sHK'(s) ds = VT ha(p)

.

~~
1I I

Term I is zero by the assumptions on the kernel. Further, using a standard kernel derivative bias expansion,

term IIT is ¢’”’(p)=/2 + o(1). Finally, term 1. Note that analogously to (3.19) in Kiefer and Wolfowitz (1976),

%

¢r — ey = 0,(T~*/*1og T), such that we can replace & with ey because o(\/T /h x T~2/31og T) = o(1), by

assumption. °° To be precise, for some 0 < w* < oo, write

VT

<

/ {ér(p+ sh) — &p(p) — ep(p + sh) + e (p) } k' (s) ds

VT

w*/h
/ {er(p+ sh) = &(p) — ep(p + sh) + er(p) } k' (s)| ds

w*/h
+\VT

ds,

/|| / {&r(p+ sh) — &p(p) — er(p + sh) + e (p) k' (5)
s|>—w*/h

where the first term vanishes by Kiefer Wolfowitz and the second by the assumptions on the tails of k.

By lemma B2 in Jun et al. (2015) term I hence has the same asymptotic distribution as —2~1/2 /_0; {G(p +

sh) — G(p)}k’ (s) ds, which converges to a normal distribution with variance

}ling)/ / %{H(p +sh,p+5h)— H(p+ sh,p)— H(p,p+ 3h) + H(p,p)}k’(s)k’(§) ds ds,

30The result in Kiefer and Wolfowitz (1976) is for the least concave majorant of an empirical distribution function, but the difference
is minor. The supplementary material in Luo and Wan (2018) uses proposition 2 in Pal and Woodroofe (2006) with a related result.
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which equals 7"(p), as asserted. ]

Proof of lemma 1. Suppose first that § > s > 0. Then,

-

H(p+sh,p+3h)=¢{(p+ sh)l(p+5h){p(1 —p)+ (1 —p)sh— pSh — s§h2},
H(p+ sh,p)=¢{(p+ sh){(p){p(l — p) — psh},
H(p,p+3h)={(p+35h){(p){p(1 — p)— pSh},

H(p,p) = {*(p)p(1 - p).

\

Thus, lim,,_ o %,(p, s, 5) = {*(p)s. Repeating the argument for the other cases yields lim,,_ o %, (p, s, 5) =
£*(p)IMed(0, 5, 5)|. Now,

/ / [Med(0, 5, )| k" (s)k'(5) d§ ds =

0 0 o0 o0
- / / max(3, s)k’(s)k’(5) d§ ds + / / min(s, s)k’'(s)k'(5) ds ds =
oo J—oo 0 Jo

0 s &) &) o)
- 2/ k'(s)s/ K'(5)dsds + 2/ k'(s)s/ K'(5)dsds = —2/ K'(s)sk(s) ds = K,
Y -0 0 N -0

where the last equality follows using integration by parts. O

Proof of lemma 2. Letp > 0and z = p!/®=D. To obtain (17), simply note that { (p) = Q'.(p)p = zQ'(z)/(n—
1). Suppose first that § > s > 0. Then,’!

-

-1 1 - 2—n h— 3—-n h— 3—n~h
Hp+ sh,p+5hy = LD m+zmj1)z o P +p(s + HhIx

{0"”(2) + 0"(2)0'(2)2* (s + §)h/(n — 1)},
(n—Dz(1 —z)—z>""sh

I H@+shp = — (7 + psh){Q"(2) + 0" (2)Q'(2)z°"sh/(n = 1)},
-1 1= _ 3-ng
Hp.p+5h) = & )Z;(n _‘7“)1) 2R 2 4 psi(Q7(2) + Q"(2)Q' () 5h/(n - 1),
Hp.py = L2203 2o,
nn—1)

where ~ means that o(h) terms are omitted. Thus, lim,_,, #,(p, s, 5) = 2"Q"*(z)s/{n(n — 1)}. Repeating
the same argument for other s, 3, 0 orderings we get lim,,_, %,(p, s, 3) = z"Q"*(z)| Med(s, 3,0)|/{n(n — 1)}.

Now use the integration argument from the proof of lemma 1 to obtain the claimed result. O

31'The expansions below are informal to reduce length, but we have verified that they obtain if they are conducted more rigorously.
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Proof of lemma 3. The proof follows the same path as that of lemma 2 and is hence omitted. O

A.4 Boundary kernels

Proof of theorem 4. Consider ay,,. We have

h

T I w(p) —w(s)
= \/;/0 w' ($){ap(s) — a(s)}ku/h(T ‘p) d

I

l —
VThiar, (p) - ap)} = VTh < /0 v/ S)ap(k,(LEZY 1 ) as - a(p)>

v (p) —y(s) 3 p)

v (s, (L2

ds — a(p)> . (40)

/

+
)
o=
VN
o\,

'

1I

Recall that ¥(s) = a{y~!(s)}. Then term II in (40) becomes by substitution of s < {w(p) — w(s)}/h and a

standard kernel bias expansion,

o By o
\/Th</ Ply () + shik,,(=sip)ds —a(p)> = %p)}/ s*kyn(=31p) ds + o(1)

Dy
_EY v} Eot Q,2)° = Q,13Q, +Q,3)
- > 2 2
h=0 Q2 +9Q,0Q,, - Q2

+o(1). (41)

The limit in the right hand side in (41) equals one for all 0 < p < 1 and equals (x —4)/(x — 2) for p =0, 1.
Since ¥ = (a”)/(y'?) — (&'w"")/(y'?), we get the asserted asymptotic bias.

Now term I in (40). Integration by parts produces

1
\/gw’a){éﬂl)—ea)}k.,h(wi )

. J/

\/7/ w2 (){er(s) — e(s) — &p(p) + e(pIK, <l//(p) w(s) 3 )
\/7{€T(p) — e(p)}/ /2( )k W(P) w(s) E )
1

] f—
— \/§/o v (s){er(s) — e(s) — &r(p) + e(p)}kwh<M ip> d

-~

v

/

J
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T, . : " —
—\/;{eT(m—e(p)} | v (KB ) as @)
v

Term I in (42) vanishes because é,(1) converges faster than /7" /h. Term III equals

T , . (p)_ (0)
V5 O () = ety (=)
T, . w(p) —w()
- ZW (O{erp) _e(p)}kwh(T §p>

T, . ! " -
+\/;{eT<p)—e(p>} /0 w5k (L2 ) s, @)

For fixed0 < p < 1, (43) is op(l) by the conditions on kq,h and at p = 1, the superconsistency of é;(p) takes
care of the problem.

By a change of variables, terms IV and V in (42) are 0,(1). Finally, term II in (42). Consider fixed
0 < p< 1. Let ¥(p; sh) = w~{w(p) + sh}. Substitute s < {y(s) — w(p)}/h to obtain

\/% / s s (6 { P sh)} = e{ (s s} = & (p) + () K, (=51p) ds

~ w\’/(g) /yj‘”{@<p+ Wf?p)) - G(p)}k;,h(—s;p) ds,

which has a limiting mean zero normal distribution with covariance kernel

w’z(p)}llii%/ w/ Wkf,,h(—S§p)k;,h(—§§p)?/h{p,S/l//’(p),S’/l//’(p)}dEdS-

Note that v, = —00, D —>oo,k;/h—>¢’ash—>0. O

W

Proof of lemma 4. We have

i Lt v(p) — v (s iy [T v(p) — v (s
() = 5 /0 v @, (L2 p) ds = - 2 [l v (M ) s
j:

h h
T
T Uj(P) T
=y aTj/ kyn(=s1p)ds = Y\ ar;A,(p).
j=1 0;(p) j=1
The second statement in lemma 4 is a natural property of the normal distribution. O
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A.5 Derivatives

Lemma 9. In the symmetric case,

F>7"(p)

n- _ 2—n n woy_ Q=m@=2n) 43,
Fp)=p""0 [ =——7, [,(0= e EX(p), [l = WF4 (p).
Further,
a(p) = F(p)Q {F,(p)} + (n = D)O{F,(p)}1,
F2 n
a'(p) = " _1)2(nQ + F,0"),
< F3 —2n (44)
a’(p) = PESIE {@—-mnQ’ +3F,0" + F,0"},
F4 3n
a"(p) = T {B-2m@2-mnQ' +(12—4n—n*)F,Q0" + (8 - 2n)F2Q'” + F*Q””}
Proof. Trivial, but messy, calculus. O O

Proof of theorem 5. Note that

o, () = l//(p) W,(s)aT(S)k,<w(p);w(S)>ds‘ 4s)

First, note that by integration by parts and substitution we have

v'io [ (v®@—w©\ . v [, () —w(s)
e v (s)a(s)k (T) ds ~ = /a (s)k<—h > ds =

/ 2 / "
o) [ Sl e+ sk ds = oo+ o) 5w ] wen [ ke,

which yields the asserted bias after noting that the Epanechnikov kernel is a density with variance 1/5. Finally,
skipping some steps that repeat steps taken in the proofs of earlier theorems and using integration by parts
and substitution plus the properties of the Epanechnikov kernel,

v'(p)
h2

ds ~

' ($){ar(s) — a(s)}k' (M)

l// (p)

/ W) {eT<S)—e<s)—eT(p)+e(p>}k”<M> ds

= W:g}) l{éT (p + JZ,)) - e<p + ws/(p)> —er(p)+ e(p)}k"(—S) ds
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5 e )~ ) e e o

B 13
i ZZ;\(/@ {G<p+ws?p)> (p)}

which has the asserted limit distribution. O

A.6 Distribution of win—probabilities

Proof of theorem 8. Note that

VTG 0.0} - G{O.(M}] = VTGO (0)} — Gr1O.(p)} — GLO(p)} + G1O.(p)}]
+VT[Gr10.(0)} - GLO.D)}] + VT [GI0,+(n)} - G{O.(P)}]. (46)

The first right hand side term in (46) is op(l)since ﬁ (G — G) converges weakly to a Gaussian process and
O, is consistent for Q.. The third right hand side term expands as g{Q.(p)}{O.r(p) — O.(p)} plus terms of
(uniformly) lesser order. Noting that Q. converges superconsistently at the boundaries, the stated result then

follows from the independence of Gy and Q,.r. U

A.7 Derived objects

Proof of theorem 6. Using integration by parts we get

1
VT(BS - BS) = ﬁ/o [{ar(p) — a(p)}p = {&r(p) — e()}]| f,(p) dp =
1
VT{ep(D) - e(D) £,(1) = VT / (er(p) — e L1 (0)p +2/,(0)} dp =

VT / (&) = e(9)) s/ dp 0,1,

Apply theorem 1 and lemma 2. 0

Lemma 10. For any T and any C > 1, ZrT=_11 Pr(zt_rﬂ E*/(T —r) > C+1) <2/{exp(C/4) — 1}, where

{E} is an i.i.d. sequence of standard exponentials.

Proof. The left hand side in the lemma statement equals

ZPr(T_ Z(E*-1)>C><2Zexp( (2T(c_:)f)2> 47)

t=r+1

by a Bernstein inequality, noting that standard exponentials satisfy the Bernstein condition with parameter
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one. Since C > 2, the right hand side in (47) is bounded by
T-1 T-2
2 Y exp(~(T' = )C/4) = 2exp(~(T = 1)C/4) Y (exp(C/4)Y',

r=1 r=0

which is bounded above by the right hand side in the lemma statement. O
Lemma 11. Let { E*} be i.i.d. standard exponentials and let E, = Y, E¥*/ Etho E}. Then

. . (Er — E)r
lim lim sup Pr(max _ > 2C> =0.
r<T T—r

7% Tooo
Proof. The left hand side in the lemma statement equals

T

r -
T+ 1)(T-r) Z Et

t=r+1

Pr | max >2C| <
r<T 1 T
7 L E
T+14
{ T T
P( E* 12) p S <
(Frr B> 12)+ r<r3“<aTX(T+1><T—r>_Z > C)s
=0 t=r+1
T-1 1 T
£
0(1)+ZPr<T_r D E >C>.
r=1 t=r+1
Apply lemma 10, then let C — oo. O

Lemma 12. a7 (1) = O,(1).

Proof. Let E, be as defined in lemma 11. Note that az (1) = max, {bq)T — b,r}/(T — r). By Nagaraja
(1982), ar(1) has for any T the same distribution as

X O(Ep)T — Q(E)r — O(E;) + max {O(Er) — O(E)}r _
r<T T —r r<T T —7r
{O(E7) — Q(E)}r {O(E7) — O(E)}r
O,(D+ (1—511930 T—r + r<r(111§)e()T T—r - (48)

Now the last right hand side term in (48) is bounded above by {Q(1) — Q(0)}(1 —¢)/e < oo forany 0 < € < 1.

That leaves the middle term, which is bounded above by

! (Et - Er)r ’
max max Q'(p)max ——— = max max Q'(p) X O (1),
(1-e)T<r<T E,<p<Er r<T T —r (1-€)T<r<T E,<p<E; 4

by lemma 11. The stated result then follows by letting p* be a value for which Q’(p) = 0 forall p* < p <1,
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which can be done by assumption that g is nonzero and continuous at upper boundary and choosing e small

enough to ensure that Pr(E;_.y > p*) = Zg;eﬁ_l (f)p*’(l -7 5 1,as T — 0. L]

Lemma 13. /' {a(p) — a(p)}>f,(p) dp = 0,(1).

Proof. For C > 0 independent of T, the left hand side is

1 1
/0 {ar(p) — a(p)}*f,(p) dpl(ar(1) > C) + /0 {ar(p) — a(p)}2f,(p) dpl(ar(1) < O). (49)

For any value of C < oo the second term in (49) is 0,,(1) by the dominated convergence theorem and pointwise
convergence of a-. The second term in (49) equals zero with probability approaching one as T" — oo followed

by C — oo by lemma 12. O

Proof of theorem 9. Note that

1
VT(BS-BS) =T /O [{ar(p) — a(p)}p — (&1 () — e(P)}1f,(p) dp +

v

-~

1

1 1 1
/0 A(p) dGr,(p) + /0 {ar(p) — a(p)} dGyr,(p) - /0 {er(p) = e(p)} dGr,y(p), (50)

o J/

' '

~~
II I v

where G, = ﬁ (Fyr — F,). First, note that Gy, -~ G, by theorem 8. Thus, since the class of right—
continuous step functions is Donsker and by lemma 13, van der Vaart (2000, lemma 19.24) implies that term
1L in (50) is 0,(1).°* Further, term IV is 0,(1) by theorem 8.

Now, term I in (50) is using integration by parts equal to
1
VT (er(1) - e(D}f,(D) - ﬁ/ {er(p) — e} pf,(p) +2f,(p)} dp. (5D
0

Note that the first term in (51) is op(l). Term II in (50) can likewise be written as

1
- /O o (p)pGr,(p) dp. (52)

Now, combining the above results with the proof of theorem 8, it follows that

2Lemma 19.24 in van der Vaart (2000) is stated specifically for empirical processes, but its proof relies merely on continuity
properties and the fact that F ;- is not an empirical distribution function is hence immaterial (F ;- is the empirical distribution function
of estimated p’s, not of the p’s themselves).
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1
VT(BS-BS) = — /0 (P11 +20£,(0) + @' (D)pg{ Q. (P} } VT {Q,r(p) — O.(p)} dp
1
- /0 o« (PPVTIGH O, ()} — GL1O. (M} dp + 0,(D),

which has a mean zero normal limit with variance ‘Wl‘; o where we have used the fact that G, G, are estimated
using different data such that G and Q. are independent.

To establish (33), consider /01 /01 (L, (p")H, {0 (p), O (p*)} dp* dp, which we now show to equal
the first term in (33): showing that the remainder of (32) is equal to the second term in (33) follows the same
path, but is messier.

Let[; = fOE{Gf(b) /8.(b)} g(b) db. First, use integration by parts to obtain
1
/ L(p)G{Q.(p)} dp= QL (1) — 1. (53)
0

Then, /! (1) dt = Q/(1) — Q'(p)p?, whence

0

1 1 1 1
/0 /0 ()L (p*)GIO, {min(p, p*)}1 dp* dp =2 / L,(p)G{QO.(p)} / () dtdp =
p

Q*(1) =20/ (DI, + I,. (54)

Subtract the square of (53) from (54) to obtain I,—1 12, as promised. To see that (33) is in fact the semiparametric

efficiency bound note that for any hypothetical parameter vector 8 indexing g, g,.,

b G2(b)g(b)
0

8.(b)
b G2(b) b G2(b)g(b) G (g
< ey db— | 25 g (b)db—2 dtd,g.(b) db =
/o 2.5 5 /0 2w % / / T ooe®
G2(b) G%(b,)g(b,) < G.(1)g(t)
[E( Ol logg(b)) {(W +2/O e dz)de loggc(bc)}

G*(b) G*(b,)g(b be
_ E{( -(b) 2(b)g(b,) _2/ G.(Hg(1)
0

- dt )9, log{g(h)g.(b.)) ¢,
8(b) g2(b,) g.(0) t) oloztzblec C)}}

which yields the stated bound by the arguments in Newey (1990, page 106). We have ignored the possibility
that the upper bound can depend on @ but that is irrelevant since the upper bound can be estimated at a rate
faster than ﬁ . O

Proof of theorem 10. The proof is largely a repeat of that of theorem 9. The main difference concerns
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1
VT /0 [, (p) — a(p)}p — {27y () — ep))] £,(p) dp

1 &)
VT en () — ey - Y te(s) — ep " 0k [ LL YN 45, /) dp
n n »

T 1 © _
_¥r [ [ 1= comor( Y2 asro

1
— 0,0~ [ VT(&®) - s ap
0
where we have omitted a few steps entailing nothing more than substitution and simple expansions, including

a nonparametric kernel bias expansion. O

Proof of theorem 7. Note that

1 1
VT /0 {ar(p) — a(p)} dF,(p) = VT (&r(1) = e(D)} f,(1) = VT /0 (&r(p) — e(p)} f1(p) dp
d 1
- /O G(p)f,(p) dp,

by theorem 1. Note that f/(p) = (2 — n)pB=2/=D 1y — 1)2, O

Proof of theorem 11. The proof follows with minor adjustments by repeating the steps in the proof of

theorem 9. O]

B Technical results and alternative methods

This appendix contains further details, supplementary results, and variants of the estimators defined earlier.
The results are organized in parallel with the structure of the main text.

B.1 Convexity

Lemma 14. The expected payment function is convex in the probability of winning the auction in any

Bayes—Nash equilibrium of a feasible auction mechanism with independent private values. O

Proof. Let v be bidder i’s valuation and, by an abuse of notation, let e(v) denote i’s equilibrium expected
payment when bidder i submits a bid equal to its equilibrium strategy evaluated at v, and let p(v) denote i’s
associated probability of winning. Incentive compatibility of the direct revelation mechanism that implements
the Bayes—Nash equilibrium implies p(v + €)v — e(v + €) < p(v)v — e(v) and p(v)(v + €) — e(v) < p(v +

€)(v+ €) — e(v + €) for all e. Combining these inequalities, we have

e(v+e)—e()—[plv+e)—p)]e < [pv+e)—pV)]v < e(v+e€)—e().
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Letting € > 0 proves p(v) is nondecreasing in v (see lemma 2 of Myerson, 1981). Letting € tend to zero
from above and below, we find that e, (v) — e_(v) = [p,.(v) — p_(v)]v, where the subscripts denotes the limit
of the function from the right (4+) and left (—). In other words, e is discontinuous in v if and only if p is
discontinuous. Moreover, the ratio of the discontinuous jumps is v. Monotonicity of p(v) then implies the
expected payment as function of p is convex wherever e(p) is defined, although the graph of the expected
payment function has “gaps” at any points of discontinuity in p, e.g. when the seller sets a binding reserve
price. However, p(v) is Riemann integrable (Myerson, 1981), so p(v) is continuous almost everywhere with

respect to the Lebesgue measure.

O

B.2 Least squares

Lemma 15 characterizes the solution to the least squares problem as an intermediate step toward proving the

solution is an isotonic regression function.

Lemma 15. If ey is piecewise linear in p then the minimizer of the least—squares criterion (4) among

nondecreasing, nonnegative functions is a right—continuous step—function. [

Proof. Because a has to be nondecreasing, the optimizer must be constant between (r — 1)/T and ¢/T. The
minimizer is right—continuous with possible discontinuities at /T, because the objective is minimized if the
“jumps” in « coincide with discontinuities in the derivative of e;. In other words, the value of a should be
smaller anywhere to the left of the discontinuity in order to minimize the first integral in (4). Any jumps in «

should be “timed” to take advantage of the negative contribution to the least—squares criterion that comes

from the discontinuities in the derivative of e, as illustrated in figure 10. O
( Or; X Or» ]
| | |
\ 1 \
0 0.5 1
[ ary A ar; )

Figure 10: Illustration of the characterization of the a,’s for T = 2.

An alternative way to arrive at an estimator ;. and thence an estimator €. is by defining the problem as

an inverse isotonic regression problem. The idea is to define

@T(&)=infargminzT:{eT<%)—eT(%>—%}ﬂ<% Sp), (55)

p =1

The rationale for (55) is that (55) essentially imposes monotonicity of the derivative of e: it is the natural
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analog to inverse isotonic regression estimators for the current context.>> An alternative way of thinking

about it is that the population objective function corresponding to (55) is

S [r{e(£) -e(F)) a5 2p) = LR o150 -ahi(15h <),

t=1 =1

N =

which is optimized at the value of p = (t — 1)/T for which a{(r — 1)/T} is the largest value less than &.

Returning to (55), an estimator &

7 can be defined as a;(p) =sup{a@ : Op(a@) < p}. There is no a priori

reason to prefer ay. to ay or vice versa, albeit that a; may be easier to compute. In fact, they are numerically
equivalent because O (&) = sup{p : ar(p) < a&}.
B.3 NPMLE

To facilitate the numerical optimization of the maximum likelihood objective in (12), we use the fact that

MLE

¢z is linear on the interval [e,_y)/b¢_1), €/ b ] to express e, in terms of its derivative and e(,_)

n  €u-1) ) _ ¥y /by-1) =1

€n = €u-1 +0‘z<__
O DT O by by, " ag /by — 1

Combining this recursive relationship with the constraint that e ) = b7, we may write e, as

%5/ b5y =
¢w = bary (56)
sll )/ by = 1

where the product H a, is defined equal to one for t = T for any sequence {a,}. Using this expression

s=t+1
to replace e, in (12), the loglikelihood becomes

T T
Z(a;b) = Z <10g by + Z {log(&(s)/b(s) — 1) —log(&)/b(s-1) — 1)} —log by, — log(a,) — b(z))> . (57)
t=1 s=t+1

By inspection of the above display, the MLE must satisfy a(;) = b, and «(,, > b(,. Problematically, this
implies an unbounded density at the lower end of the competitor bids’ support, which in turn implies that the
solution to the maximum likelihood problem is not unique, since the loglikelihood criterion is infinite for any
a with &y = b(;) and &) > b,. Nonetheless, one maximizer of the likelihood distinguishes itself from the
rest because, for a fixed a(;) and a() with b)) < a(y), by < &) and a(y) < 2 b3y — b y), the solution for {a )}
forz=3,...,T is unique. Furthermore, this unique solution does not depend on the values of «(;) and «(,,
because the loglikelihood is additively separable in &, and the monotonicity constraints on «;, do not bind
for t = 1, 2, and 3. Thus, we may first maximize < (&; b, ..., by) — log(a(l) — b(l)) over {a(t) t>2}. We

may then separately define &MLE

T = b1y and choose any a(y) € (by), & aMLE]. Within this (shrinking) interval,

T,3)

33 An inverse isotonic regression estimator can for a given m be characterized as a minimizer x of Z:’z (= m)1(x; < x).
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the likelihood contribution of the second-lowest observed competitor bid is strictly decreasing in &,,. In
practice, we suggest defining the MLE equal to the boundary value &¥é§ = by
B.3.1 Pooled-adjacent-violator algorithm (PAVA) for MLE. By adding and subtracting log b;, and

log b(,_;y and canceling terms in the inner summation of (57), we can rewrite the loglikelihood as

T

=1

T
Z {10g(55(s) — b(s)) —log b5 — log(as) — b(s_1)) +log b(s—l)} — log b,y — log(a, — b(t))]
s=t+1

T
= [ 2 {IOg(%) = b)) — log(a,) - b(s—l))} —log(a, - bm)]
t=1 Ls=t+1

T

=Exo—amaan—%o—a—nmgan—%qu
t=1

The Karush—Kuhn-Tucker (KKT) conditions for the nonparametric maximum likelihood problem are

(=2 -1
%y = by Ggy = by

+At_/11+1 :0,

420, (58)

&)~ A1) 2 0,

At(&(l) - &(I—l)) =0.

L

Let 7; be the subsequence of starting points of “blocks™ for which the nondecreasing constraint binds. By
construction, ‘7‘(:/.—1) < &(t,-) == &(,j+1_1) < &(,j+1). Complementary slackness then implies /l,j = /I,M =0.

Within each block j, the value & that satisfies the KKT conditions can then be found by solving for & in

11 tj1—1

t—2 t—1 t—2 t—1
0= (~ _ +%—%H>= (~ - )
t:ztj a— b(,) a— b(,_l) t:zt/ a— b(,) a— b(,_l)

I L S S 2 N tjs1 =3
5( - btj—l & - b(tj) & - b(l‘j+l) & - b(tj+l_2) & - b(tj+1_l)

To find the solution to the constrained NPMLE, we initially assign each &, to its own block and set {&, }
equal to the unconstrained solution &,y = (t — 1)by) — (t — 2)b,_y, for t > 1 and @) = b(yy. This initial
guess satisfies the constraint &, > b, but might not produce a monotonic sequence. Beginning with 7 = 4,
the PAVA proceeds sequentially by finding the smallest 7 such that &, < &,_;. If such a ¢ exists, we pool &,

together with the left adjacent block and recalculate @ in the above first—order condition for that block. We
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then set &, = a for all s in the block and repeat until no further violations are found. This algorithm will
converge in no more than T' — 3 steps, because exactly one more of the T — 3 monotonicity constraints are
made to bind with equality in each step and no constraints are ever made slack again.

Importantly, every iterate satisfies the dual feasibility KKT condition 4, > 0 because violations of the
primal feasibility condition &, > &_,, are resolved by imposing &, = &;_;,- Though primal feasibility may
also be satisfied, for instance, by setting &) = &, ), these deviations from the PAVA algorithm typically lead
to a violation of dual feasibility unless the PAVA algorithm would have pooled these values in a later iteration.
Thus, the final iterate of {&,} will satisfy the KKT conditions. Lemma 8 formally establishes this claim in an
appendix. Moreover, lemma 5 demonstrates that the KKT conditions are both necessary and sufficient for the
constrained global maximum of the loglikelihood objective. Thus, the algorithm converges to the MLE for «a.

B.4 Alternative smoothing methods

B.4.1 Alternative transformation. As an alternative method of applying a transformation y in conjunction

with smoothing, one can define

! 0]
. (p) (p) —w(s)
iry 0 =2 [ oMY as (59)
which can also be boundary corrected using boundary kernels:
' 1
N —y(s
aTq/(p) = WT(m/ aT(s)kwh(w Ep> ds. (60)
0

Theorem 13. Suppose that k,,, is constructed as in lemma 16 and that assumptions A to D and F are satisfied.
Then
d
Vp € 10,11 : VTh{ar, (p) = a(p)} = N{B,(p).7,(®)}.

where for 0 < p <1, %,,(p) = expression (66) X E/2 and

7,(p) = w'?(p)lim,,_, /_0; /_ozo ()P 3T, {p, s/y'(p), §/1//’(p)} dSds. where %), is as defined in (15). If
(7) holds then we obtain the simpler expression <Ww(p) = KzCz(p)y/’(p). Forp e {0,1}, QE‘W, ’“VW are finite. [

Proof. Consider ar,,. We have

1 —
VThiay, () - a(p)) = VTh (w’(p) /O ar (5 (L2 1) s - a(p))

1 —
_ \/%w’(p) [ e = a2 ) as

N J
v
1
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T/( , ! -
fE (v [ awhn(M2E2 ) as-am) . o1

J/

v

1I

Let ¥(s) = (x{u/_l(s)}/u/’{y/_l(s)}. Then term IT in (61) becomes by substitution of s <« {y(p) — w(s)}/h,

ﬁ(u/(p) / "Wy () + shik, p(=s1p) ds - a(p)) = OO 4 oy

for all 0 < p < 1 by a standard kernel bias expansion. For p = 0,1 the asymptotic bias differs by a
multiplicative constant. Note that """ equals (66), which produces the asserted asymptotic bias.

Now term I in (61). Integration by parts produces

—w(l
\/%w’(p){éT(l) - e(1)}kwh<w $p>

1
T o, : ’ s s ’ —
3D [ W10 o) e+ ey, (PP ) ds
1
1 —
/v D1e o =) [ vk, (LEE ) 65 @)

v

I

Term I in (62) vanishes because é1(1) converges at rate 7. Term III equals

Tr , g — 0 Tr ., ~ — 1
VEw 0o - k(P20 1) Ty oty - et (2D 1), )

For fixed0 < p <1, (63) is 0,(1) by the conditions on kyp-
Finally, term II in (62). Consider fixed 0 < p < 1. Substitute s « {w(s) — w(p)}/h to obtain

\/%w’(p) (el v+ shi] el )+ 5] = )+ e )y (=51 5

o~ W\’/(Z) /D;W<G(p+ wi?p)) - G(p))k://h(—sip) ds,

which by a tedious repetition of the arguments of theorem 3 has a limiting mean zero normal distribution

with variance lim,,_, w'?(p) fvz“’ f;/‘" 7, (p, /v’ (p), §/q/’(p))k;/h(—§§p) ds k;{h(—s { p) ds, which under (7)

simplifies to
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Ew'(p) lim (z‘)whkihwwh tp) = vynki 0y n1p)

Dy 0 Dy
— kyn(=0yp §P)/O kyn(—=sip)ds — kwh(_ywhip)/v kyn(=sip)ds +/v kih(—sip) dS)

Zyh

=W/ (p) lim / TR (—sipds, (64)

Zyh
as promised. For 0 < p < 1, the right hand side in (64) reduces to {2(p)y'(p)/ \/; O

To see how (59) solves the exploding bias near zero problem, consider the following. The reason we
needed e to be three times boundedly differentiable in theorem 1 is that its proof contains a second order (bias)
expansion of both e(p + sh) — e(p) and a(p + sh) — a(p): the former for &7, the latter for a. If one uses ér,,
then the corresponding expansions become e[y~ {y(p) + sh}] — e(p) and q/’(p)(a[q/‘l {w(p)+sh}]— a(p)).

This makes all the difference since the second derivative of the first difference with respect to s evaluated at

s=0is
!/ 2
Q) _ o) v ) ©5)
w2 () w' () w(p)
The corresponding expression for the second difference in the preceding paragraph is
(X”() a ) I/() " "2 )
lzp _3 ’(p w/zp _a(p)l///3(p) +3a(p)w,4(p . 66)
v v wp) v (p) w4 (p)

Note that the asymptotic bias in (66) can be made to equal zero by choosing y = e. Unfortunately, we do not
know e, so making that choice is infeasible.”*

The bias formula in (66) is somewhat complicated and a downside of the formula for &, in (59) is that,
depending on the choices of k, y, it may require numerical integration. This is an inconvenience more than a
serious problem since a is piecewise constant. Nonetheless, ar does not suffer either of these drawbacks.
B.4.2 Alternative boundary kernels. In section 4.3.1 we present one boundary correction scheme that
uses boundary kernels. The following lemmas illustrate how one can construct a boundary kernel from a

Gaussian kernel.

Lemma 16. Let ¢p, © be the standard normal density and distribution functions. Then kwh(s ip) = (a)y, =

a)y,zs)tb(s) satisfies the requirements in (23) for

Q1

W, , =
w2 2 2’
QWO + QWOQWZ - Q’wl

QI/IO + sz

l[/l = 2 2 ’
nyo + Q082 — le

(0]

where Q,,; = @YV (0,) — ®YV(v,,). O

Recall that choosing y = a was infeasible for .
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Proof. Let.7, = /W"/ sig(s) ds. Note that Fy = Q0. F; = —Q,1, F = Q5 + Q0. Thus, we need

0> 8%
a)wlgwo - a)wzgwl = 1,

—a)wlgwl + a)wz(gwo + sz) =0.

Solve for w,,, @,,,. O

3

Lemma 17. Let .7; be defined as in the proof of lemma 16 and let k,,,(sip) = 3

=1 s/_la)w-qb(s), where

-1

CUWI jo j] jz 1

w([/Z = j] jZ j:; 0

COW?’ j2 j3 j4 1
Then k), satisfies the requirements of (23) everywhere, including at the boundaries. ]
Proof. Trivial. O

In theorem 4 the kernel used was taken to be the kernel constructed in lemma 16. This is inessential.
Indeed, the results go through with ¢ replaced with a second—order kernel « if k), is chosen as k,,(sip) =

(a)wkl - a)y,kzs)k(s) where By k1 and Dy 12

kaz _a)y/klgy/kl

10} =
_ 2 ? l[/kz
Y

Wy k1 =

’

Qu/kZ

with Q5 = [, wk(~u) du.

B.4.3 Another boundary correction. A second way of implementing boundary corrections is to create
artificial values of a(p) for p outside [0, 1]. Our approach is loosely motivated by the KZ method for kernel
estimators, but it is a bit cleaner because of our specific circumstances: we are trying to smooth out an existing
estimator which means that we already have values of a(p) between zero and one.

Here, we restrict k to be the Epanechnikov kernel /~ ™\ which is a quadratic on [—1, 1]; indeed it is
3(1 — x?)/4.>> Consequently, any boundary correction procedure will be immaterial if the distance between
w(p) and w (1), y(0) exceeds h. We focus on correcting estimates near the upper bound, p = 1. Impose the
scale and location normalizations y (1) = 0 and y/(1) = 1.

Define

a(l+s)=a[l = p{y(+ 9}/ {w(d+9}, s>0, (67)

3Earlier, we had taken f k(s)s* ds to equal one, which is not true for an Epanechnikov kernel. We adjust the asymptotic bias
expression accordingly.
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where p(s) = s + ds*> + {d*> — "' (1)d /6}s3, with d = a/(1)/a(1). Then it is straightforward but unpleasant
to verify that the thus extended version of « is twice continuously differentiable at one. We extend ay
analogously to (67) using a suitable estimator d in lieu of d, defining  to be like p but with d replacing d.

We can then obtain a smoothed estimate of @ by defining

w(p) — w(s)> ds.

7 (68)

=1 | arew ok

o

where the superscript R stands for ‘reflection.” As noted, away from the boundary, the behavior of 6:713”/ is no
different than that of the estimator without boundary bias correction. So we only analyze its behavior in an

h—-neighborhood of the boundary, as formulated in theorem 14.

Theorem 14. Let (i) assumptions A to D be satisfied; (ii) k be the Epanechnikov kernel; (iii) y be twice

continuously differentiable at 1 with w(1) = 0 and w'(1) = 1, (iv) d converge to d at a rate no slower than

\5/? . Then,

VTh{ak (1-th) - a(l - th)} + ~ €h3 a()(1 =12 +3)d — d) S N(BR@D.7R0).  (69)

where BR(t) = {a(1) — o/ (D" ()}E/10 and 7 R(t) = limy,_ ;™ [ k()k,(3)7,(1, =5, —5) ds dS,
where ;c,(s) =0@G/D{t -1 -t <s<14+1)—-2s100 < s <1 —1)} and I, was defined in (15). If (7)
holds then we obtain the simpler expression 7 R(t) = 3&:2(1){2 -2 -5t + 5)}/5. ]

Below, let e,; denote the convergence rate of d.

Lemma 18. Suppose that for 0 < d,a < 1, 4 —a = O,(er). Then

ér(a) —e(a) = ér(a) — e(a) + e(a) — e(a) + Op(\/(—eT log eT)/T).

Proof. This is just a rearrangement of &(d) — e(a) — &r(a) + e(a) = O, (+/(—er loger)/T), which is Levy’s

modulus of continuity theorem. O O

Lemma 19. Let y satisfy condition (iii) in Theorem 14. For any 0 < C < oo, supy<,<c|p{w (1l + sh)} —
plw(1+ s} = O, (heyr).

Proof. Follows immediately from writing out noting that p, p are third degree polynomials and noting that

w(l) =0. O ]

Lemma 20. Ler y satisfy condition (iii) in Theorem 14 and p defined as in Appendix B.4.3. For any
0 < C < 00, supye,eclp{w(l + 5h)) = shl + supo,cclply (1 + sh)} = sh| = O,(h?).
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Proof. Follows from the mean value theorem and the fact that d is bounded in probability. O O

Lemma 21.
&l = ply(1 + sh)}] —e(1 — sh) =
(&r(1 = sh) = e(1 = sh)} + (e[l = p{w (1 + sh)}] = e(1 = sh)} + 0,(\/B/T).

Proof. Follows directly from lemmas 18 to 20. O O

Lemma 22. Forany 0 < C < oo,

sup [ér(1+th) = 260(1) + (1 = th) — e(1 + th) +2e(1) = e(l = th) = BR)| = 0, (V/R/T),

0<t<C
where %?713(1) =0fort <0andfort>0itis

e[l - ply(1 +1h)}] —ell — p{yd +1)}]
w'(1 +th)

t
h/o (et = Alwt + s))1 = elt = plu(1 + sw))

BR(1) =

v (1 + sh)
w'2(1 + sh)

Proof. Using integration by parts we get

th
ér(1 +th) =éT(1)+/ ar(1+s)ds =
0

th
ér(1) +/0 ap[l = ply(1+ )} {1 +y(1 +9)}ds =

] &l = plw (1 + th)}] oo (1 + sh)
Now, by lemma 21 we have
érl1 = plw (1 + sh)}] = &p(1 — sh) — e(1 — sh) + e[1 — p{y(1 + sh)}1 + 0,(\/h/T),
uniformly in 0 < s < C. Thus, (70) is
y y e[l — ply (A +1h)}]
2¢r(1) —{ér(1 —th) —e(1 —th)} — TS —
h/te[l ptw + sy S o (VR/T). 1)
o i w2(1 + sh) , '
Repeat (70) for e in lieu of é; and subtract from (71). ]
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O]

Lemma 23. For 9;;713 defined in lemma 22 and any 0 < C < oo, supOSssclgé’}Ylf(s) + a(l)(tf —d)s*h?| =
op(hzedT + h3).

Proof. Note that by the mean value theorem and the definitions of p, g, y,

252
el1 = (1L + sh)}] - el = plw(1 + sW)}] = —a(D(F"(0) = 5O} 5 + 0,0,

Further, p”'(0) = 2d and p"'(0) = 2d. The stated result then follows from the fact that d — d = O,(eqr). O
]

Lemma 24. For 95# defined in lemma 22 and any 0 < C < oo, supOSSSCL%’YIS(s)l = Op(hzedT) + op(h3).
Proof. This is an immediate consequence of lemma 23. O O

Lemma 25. Uniformlyin0 <t < 1,6

%/_: k(t//(l - tf;l) — w(s))wf(s){aT(S) (o)) ds =

1
- ga(l)(l — 03t +3)d-d)+ % / K'(s)[ép{1 = (s —h} —e{l — (s —)h}] ds

t

—%/ K ()Ep{l+ (s —h} —e{l + (s —DHh}]ds, (72)
-1

where ~ means that any omitted terms are asymptotically negligible.

Proof. The left hand side in (72) is by integration by parts equal to

1 mk,(w(l —th) —y(s)

nJ_o h

)w'%s){éT(s) —e(s)} ds

0 1—1th) —
-1 / k("’( > "’(s)>w”<s>{ér<s>—e<s>}ds. (73)

The first term in (73) dominates the second term, so we deal with the first term only. The first term in (73) is

for ¢,,(h) = w~{y (1 — th) + sh} equal to

1
- %/1 K (' {6 (W} (8r (W)} = efg(M)}) ds

1

o —% / K' ()" {6,50) + ¢/, (0)h} (81{5,5(0) + ¢/ (0)h} — e{g,5(0) + ¢/ (0)}) ds
-1

%For t > 1, we get standard asymptotics.
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1
~ _E/ K()[Er{l+(s—0)h} —e{l +(s—1)h}]ds. (74)
Since é1(1) is a super—consistent estimator of e(1), we get by lemma 22 that

1
- %/ K ()[Ep{1 + (s —Hh} —e{1 + (s — Hh}] ds =~

1 lemma 23

1
——/ k'(s)@;f(s—z)—[éT{l—(s—t)h}—e{1—(s—t)h}])ds ~
h J;
1 1
h(x(l)(cf—d)/ k’(s)(s—t)zds+%/ K ()[ep{1 — (s —h} —e{l — (s —Hh}]ds. (75)
t t

Since k is the Epanechnikov kernel, the right hand side in (75) simplifies to

1
—%a(l)(l -1 +3)d-d)+ % / K'($)[ér{1 = (s —t)h} — e{l — (s — t)h}] ds. O

t

Lemma 26. Uniformly in(0 <t < C for given 0 < C < oo,

© oyl = th) - 2
! / k("’( > W(S)>1//’(s){a(s)—a(l — thy} ds = {a'(1) = &' (D" (D)} 2= o+ o(12),

Proof. Follows directly from a standard kernel bias expansion followed by an application of the mean value

theorem, noting that /_11 k(s)s>ds = 1/5. O O

Proof of theorem 14. The asymptotic bias is derived in lemma 26. The second term in (69) corresponds to
the first right hand side term in (72). Thus, the only issue remaining is to show that \/ﬁ times the sum of the
second and third terms in (72) have a zero mean limiting normal distribution with variance equal to 7" R(t).

Now, using the shorthand Y = é; — e and noting that k is the Epanechnikov kernel, the second right

hand side term in (72) can be written as

3 1 3 1-
_ﬂ/t sYr{1 —(s—t)h}ds——ﬂ/0 (s+0)Yr(1—sh)ds. (76)

The last right hand side term in (72) is then

3 t 3 1+¢
7 / sYp{l+(s—1t)h}ds = 7 @t —s5)Yr(1 —sh)ds. )
—1 0

Summing (76) and (77) yields

3 1-t 3 1+t
o ; 25Y (1 —sh)ds + o . (@t —s)Yr(1—sh)ds. (78)
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Recall that ;c,(s) = G@B/2){¢t-9H1(1 -t < s <1+1) —2s10 < s £ 1-1)}. Then (78) becomes
h! /01+z loct(s)YT(l — sh) ds, which leads to the asserted limit distribution using techniques similar to the
ones employed in proofs of e.g. theorem 4 above.

Now the simplification of 7" R(¢) if H* has the indicated form. Note first that %, (1, —s,-8)=¢ 2(1) min(s, 3).

Hence

1+t 1+t o o
7R = £2(1) / / k,(s)k,(5) min(s, §) d§ ds =
0 0

lo—t lo—t lo—t l;l-t lj-t 1;0—1‘
2§2(1)< / k,(s)s / k,(3) d5 ds + / k,(s)s | k3 dsds+ [ k,(s)s / k,(3) d§ds>. (79)
0 s 0 t s

1- 1—1
Now,

141
/ k(5)ds =3{(t—s)?—-1}/4, ifl—t<s<1+t,
’ 1—t R
/ k,(5)ds =3{s* - (1 =0?}/2, if0<s<1-t,
which implies that (79) equals
2&1)(%(1 —1° +31(1 —0)* + 13—():2(—9:3 + 307> — 35t + 15)) = %g2(1){2 — (£ =5t +5)},

as claimed. O

As noted, the conditions on y are normalizations: without them w (1), w’(1) would pop up in various
places. Our assumption of the Epanechnikov kernel is not essential but the proofs do make use of the fact that
the kernel has bounded support. Moreover, the polynomial portion of the second term in (69) would be more
complicated.

Since d is essentially a nonparametric kernel derivative estimator, achieving a T''/5 rate is feasible under
assumption D.>” If one assumes Q. to have one more derivative at 1 then « is thrice differentiable at 1, which
would imply that picking a bandwidth &, for d that converges faster than T~!/10 and slower than T-!/> would
make the second term in (69) disappear: h,; ~ T~'/7 would be optimal.

1/5 whereas

So, here we advocate picking a bandwidth for d which tends to zero more slowly than 7'~
KZ advocates making the bandwidth go to zero faster than 7-!/3. In a separate note (Pinkse and Schurter,
2019) we show that there is a bug in both Karunamuni and Alberts (2005) and KZ and that there one needs to
assume the existence of an extra derivative and choose a bandwidth that converges more slowly in order to

obtain their claimed results.

S7If the function whose derivative is estimated is twice differentiable then it is well-known that the bias is O(h,) and the variance
o(1/ Thz), where A, is the bandwidth used for the estimation of d. Here, « is the function whose derivative is to be estimated, which
is twice differentiable under assumption D since «” = Q!"p + 30"
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Near the left boundary, we apply an analogous reflection method based upon

a(s) = a [po < w(0) - w(s) >] o < w(0) —y(s) > ,
w'(0) v'(0)
where py(s) = s — dys” + {dg — doy" (0)/[6w’(0)]}s* and dyy = ’(0)/a(0). The formula is messier simply
because we had already normalized the location and scale of y at p = 1 to simplify the expressions near the
right boundary.
B.4.4 Estimating «’ near the boundary. The following result provides an example of how one can estimate

the derivative of a local to the boundary.

Theorem 15. Let (i) assumptions A to C be satisfied; (ii) Q, be four times continuously differentiable on
any compact subset of (0, 1); (iii) k be the Epanechnikov kernel; (iv) v be thrice continuously differentiable
at 1 withy(1) = 0 and w'(1) = 1; (v)d —d = O,(T~*5); (vi) limy_, VTR = E; < co. Then for any
0<t<,

\/Th3{547’fw’(1 —th)—d'(1 —th)} - \/%g(l -0’d-d) “ N (B0, 7R W),

where

—
(™)
—

(1) = 38 (8{a"(1) +3a/ Dy (1) — &' (D" (1) = 3¢ Dy (D }+

@+ 001 = 0*{af" (1) = o (1))

with a%’ " ai’ " denoting left and right derivatives,and
9 1+t¢ 1+1¢
7Ry = Zlim #Z,(1,—s,—5)ds ds.
® 410 Ji—y Ji wl )
If (7) holds then the asymptotic variance simplifies to 7" R4 (t) = 3¢2(1)t*(3 — 1). ]

Lemma 27. Uniformlyin0 <t <1,

© 1 —th) —
= / wk’("’( DY)y (5 5) - (o)) ds =

I A 3 [,
?(1—t)3(d—d)+ﬁ/l [ér{l —(s—t)h} —e{l — (s —1t)h}]ds
3 [
—ﬁ/_l[eT{1+(s—t)h}—e{l+(s—t)h}]ds, (80)

Proof. The line of proof is the same as lemma 25 but with k’ instead of k, noting that k"’ is constant whereas
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k' is odd. O O

Lemma 28. Uniformly in 0 <t < C for given 0 < C < o0,

""(1—;”’) /oo k’("’(l — ”;Z) — W(s)>u/'(s)a(s) ds = o(h?) + (1 — th)+
2 (84a"(1) + 3Ly (1) — /(D (1) = 30" (" (1) +

@+001 - nHa)" () = al" (D)), B

"

where @,

ai’ " denote the third left and right derivatives, respectively.

Proof. Let z,,(s) = w~'{yw(1 — th) + sh}. Then z,,(0) = 1 — th, z;,(0) = h/y'(1 - th), z,(0) =
—h2y"' (1 — th)/w'3(1 — th). The left hand side in (81) is

1 /
(1 —th) / ( wd - th) (S)>a’(s) ds = y'{z,,(0)} / k(S)M ds. (82)
-1 v {z(s)}

Now, for |s| < 1 we have, uniformly in s,

ll" {z,(0)}

a,{zth(s)} _ 2 l _ a’u/”
Ty~ () = o)+ (5 - )

h?s? 2 ( 1)?
+ - {af" () =3a"y" —a'y"" +3d'y"} +1(s > N———

{o]" () =" (D},

where all omitted arguments of the a, y functions are 1 — th. Hence the right hand side in (82) is
h? h? !
o(h®) +a'(1 —th) + —K (a"’ +3a'y"? — 'y = 3"y + 7(0{1” - a?”)/ k(s)(s — 1)* ds,
t

where the a’s and y’s are evaluated at 1. Finally, observe that for the Epanechnikov kernel, x5 = 1/5 and,

1 4
P @G+ -1
/t k(s)(s —1)“ds = 0 ]

Proof of theorem 15. Lemma 28 provides the formula for the asymptotic bias. For the asymptotic distribu-
tion, we start from lemma 27. Take Y to have the same meaning as in the proof of theorem 14. Note that the

sum of the last two terms in (80) equals
3 1-t 3 1+¢ 3 1+¢
—/ Y, (1 —sh)ds — —/ Y;r(1—-sh)yds=— Y,(1 —sh)ds,
0 2h2 Jo

2h2 2h2 1—t¢

which produces the promised asymptotic distribution.
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Under (7) the asymptotic variance simplifies to

9 141 141 9 1+t 141 9 1+1
282D min(s, 5) d3 ds = =¢2(1) s/ dsds = =¢%(1) s(1+1—s)ds
4 1=t Ji= 2 1—t s 2 1—t
= 242(1)[3(1 +0{(L+0> =1 =0*}=2{(1+ 1)’ =1 =0} =32 (DG -,
as asserted. Il

Although the asymptotic variances are formulated differently, the asymptotic distributions in the two
theorems coincide if one takes t+ = 1 in theorem 15. Indeed, if t+ = 1 then the correction via d becomes

immaterial since there is no boundary bias concern then. Note that if A ~ T~1/7

then the convergence rate is
still T%/7 irrespective of the value of ¢.

A perhaps puzzling finding is that the asymptotic variance is zero if t = 0. However, note that this is
not the asymptotic variance of &713’ (1) itself. Indeed, the (variation in the) asymptotic distribution of 61713’ )
is then determined by the estimation of d. To get the asymptotic distribution of a}" (1) itself requires us to
commit to a specific estimator of d and derive the joint distribution. This is neither difficult nor interesting.
B.4.5 Preserving monotonicity. One caveat to our boundary kernel estimators and ‘reflection’ procedure
is that they can undo monotonicity near the boundaries in finite samples, although for different reasons. The
boundary kernels are nonpositive near the boundary and are therefore capable of producing nonmonotonic
estimates when a; is relatively flat near the boundary. On the other hand, the transformation—and-reflection
procedure in (68) continuously extends a and its first two derivatives such that a(1 + s) is generally decreasing
in s for large enough s > 0. Indeed, this is inevitable when &’ is close to zero and &’ is negative. In any
case, we may easily remedy this by redefining the smoothed estimator for «a as the “cumulative maximum”
of the objects defined in (60), (22), and (68), for example ary, (p) = max{[t//’ (p)/h] fol aT(s)kwh{(y/(p) -
w(s))/hip} ds, sup,., dr, (@)}

Alternatively, in the case of the transformation-and-reflection procedure, we may apply this monotonization
device to the definition of the extended a;-. The kernel-smoothed estimator of the resulting monotonic function
will then be increasing on [0, 1] because k is a nonnegative kernel. Such a procedure will continuously extend
«’ and «’" at one, but may introduce a discontinuity in &’ at a point p > 1 for which a’(p) = 0. We tolerate
this discontinuity, however, because d > 0 and a finite a”” imply that the discontinuity is at a location bounded

away from one. As a result, theorem 14 does not require any modification.

B.5 Jackknife estimators

Theorem 1 and lemma 1 motivate still more estimators of a. Note that a(p) = Qé (p+0.(p)=C()+ 0. (p).
Since Q, can be estimated at a rate of ﬁ , its estimation is of secondary concern. But {(p) enters the variance

formulas in theorem 1 and lemma 1.
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We will assume for the purpose of this discussion that G, is estimated using the empirical distribution
function of the maximum rival bid, such that H(p, p*) = {(p){(p*){min(p, p*) — pp*} and the conditions of
lemma 1 are satisfied.

We present two versions, one based on theorem 1 and one on lemma 1:

(-1 ,T_{é (D) —-ér(p)—ér_ (D +e&_(»}*
ar;(p) =¢ Lz {er p(?—p) Ll Ul + 0.(p),

T = DY ta-(p)—a 2
. \/( Bt i 0P 5

K>

where the —# subscripts denote leave—one—out estimators, i.e. the identical estimator without using observation
t. Note that & is only defined on 0 < p < 1 albeit that it can be defined to equal zero at zero and one. This
is precisely the reason for having é;(1) — ér _,(1) in the numerator even though it could be left out without
affecting the result for fixed 0 < p < 1.8

We inserted a generic estimator Q. into the definitions of &; 7» @p . Its form is largely immaterial, but
natural choices would be respectively é,(p)/p and é;(p)/p for p > 0 and zero for p = 0.

There are three downsides to the use of these jackknife estimators. The first issue is that in their current
incarnation it is assumed that H* has a specific form. But the formulas can be generalized or derived for
other forms of H*. Second, the jackknife estimators are costlier to compute since each estimator has to be
computed 7" + 1 times. This may be of little practical relevance since computation of & is fast. Finally, the
jackknife estimators are not guaranteed to be monotonic. This is a property they share with other estimators,
including GPV, and which can be addressed by the use of a monotonization procedure, which is not difficult

but admittedly cumbersome.’® We do not study the asymptotic properties of jackknife estimators in this paper.
C Other mechanisms

The general estimation strategy is based on the convexity of the expected payment function in the Bayes—
Nash equilibrium of a trading mechanism. Because the convexity of the expected payment function does
not depend on the mechanism—it is a consequence of the incentive compatibility condition of the direct
revelation mechanism that implements a Bayes—Nash equilibrium of the trading mechanism—the approach
generalizes beyond first—price auctions. The asymptotic results in this paper are specific to first—price auctions,
but they may be adapted in natural ways to other auctions or auction-like settings. A trivial example is the
second—price auction, in which a bidder’s expected payment to the seller is e(p) = fop 0.(q) dg when players
adopt undominated strategies. Thus, if a bidder optimally bids b = Q,.(p) so as to win with a probability of p

in equilibrium, its private valuation must be v = b = Q_(p) = €’(p). Of course, we do not need to estimate

BT (&,(1) = e(1)} = 0,(1).

3See Mal9b for a monotonization procedure of the GPV estimator.
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the expected payment function and its derivative in order to rediscover the bidder’s weakly dominant strategy.

In an all-pay auction, our approach suggests estimating the inverse strategy function with the reciprocal
of Grenander estimator for the density of the highest competing bid (Grenander, 1956a,b). To see this, note
that the equilibrium expected payment function is e(p) = Q.(p). Depending on which bids are obervable,
various unconstrained estimators for the competing quantile function can be computed. Our estimator for the
inverse strategy function, i.e. the slope of the greatest convex minorant of the unconstrained estimator for
the expected payment function, is equal to the reciprocal of the slope of the least concave majorant of the
competing bid distribution.

Another example is the k—double auction, in which a buyer and a seller simultaneously submit price offers
b and s, respectively. If the seller’s offer is less than the buyer’s, trade occurs at a price of kb + (1 — k)s;
otherwise, there is no transaction. In a given equilibrium of this game, the buyer’s expected payment function
is therefore eg(p) = kpQ(p)+(1—k) fop 0,(g)dg, where Q is the quantile function of the seller’s equilibrium
offer and p is the probability of trade. When k = 1, the price is solely determined by the seller’s offer and the
buyer’s offer merely determines whether trade occurs. Accordingly, the expected payment function resembles
that of the second—price auction and convexity of the expected payment function will be satisfied whenever
ep is estimated by substituting a nondecreasing estimate of Q into the previous formula. When k = 0, the
buyer’s decision problem resembles its choice of p in a first—price auction; while for k£ between 0 and 1, the
expected payment function is a convex combination of the two. From the seller’s perspective, the relevant
object is the expected revenue —eg(p) = k fll_p 0O3p(q) dg + (1 — k)pQ,(1 — p), which must be convex in
equilibrium.

The example of the k—double auction also serves to highlight the difference between our approach and the
general identification strategy of Larsen and Zhang (2018). Larsen and Zhang illustrate how one can estimate
the seller’s valuations from data that only include the seller’s offer, the transaction price, and an indicator for
whether trade occurred. The buyer’s offer and the parameter k are unobserved. Whereas their approach is
agnostic about the mechanism that generated these data, the methods in this paper would take advantage of
the econometrician’s prior knowledge of k and use these same data to estimate the buyer’s inverse strategy

function, not the seller’s valuations.
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